Seminari



OpenDay_21-11-2018:Attivita' di ricerca e didattiche nel curriculum di Elettromagnetismo Prof. Fabrizio Frezza
21/11/2018
Verra' presentata una sintesi delle attivita' di ricerca e didattiche nel curriculum di Elettromagnetismo
OpenDay_21-11-2018:Attivita' di ricerca e didattiche nel curriculum di Scienza dei Materiali Prof. Carlo Mariani
21/11/2018
Verra' presentata una sintesi delle attivita' di ricerca e didattiche nel curriculum di Scienza dei Materiali
OpenDay_21-11-2018:Attivita' di ricerca e didattiche nel curriculum di Matematica per l'Ingegneria Prof. Fabio Camilli
21/11/2018
Verra' presentata una sintesi delle attivita' di ricerca e didattiche nel curriculum di Matematica per l'Ingegneria
Fractional operators and time-changed processes Prof. Mirko D'Ovidio Jan. 21, room 2E, 15:00 - 17:00 Jan. 22, room 2E, 15:00 - 17:00 Modulus I
Jan. 21, room 2E, 15:00 - 17:00 Jan. 22, room 2E, 15:00 - 17:00

Fractional operators and time-changed processes Prof. Francesco Petitta Feb. 8, room 1B1, 11:00 - 13:00 Feb. 13, room 1B1, 11:00 - 13:00 Modulus II
Feb. 8, room 1B1, 11:00 - 13:00 Feb. 13, room 1B1, 11:00 - 13:00 Modulus II

Prof. Claudia Timofte Four Lectures on Homogenization Lectures in room 1B1 Pal. RM002
Tue, 9 April -Thu,11 April -Mon, 15 April -Tue, 16 April    (time table h. 11.00/13.00,Thu, 11 April 15:00 17:00)

Four Lectures on Analysis Prof. Vilmos Komornik, (Université de Strasbourg, France)
May, 8-9- 13-16, Room 1B1Pal. RM002 Time: 11:00 - 13:00.
May, 8 Fourier analysis in control theory May, 9 Combinatorial theory of numbers May 13 A simplified introduction of the Lebesgue integral May 16 Simple and not too well-known proofs of some important theorem of analysis
On diffusion phenomena and fractional time-derivatives, Prof. Masahiro Yamamoto (the University of Tokyo)
Starting day 04/06/2019 June All Tue Thur 10:00 12:00 room 1E Pal. RM004 (except 11, 10:00 13:00 on june 18 and 20 )
In many applications one can observe anomalous diffusion phenomena in heterogeneous media and more accurate analysis is essentially demanded. For example, the diffusion of contaminants in soil often indicates anomaly, which cannot be described by the classical diffusion-advection equation and we crucially need a better model equation for reasonable predictions which guarantee public safety. Among them, the evolution equations with fractional time-derivatives are calling great attention. Although there have been many researches for fractional calculus since Leibniz, serious researches for time-fractional partial differential equations have been started only recently. In particular, the author and international research teams have established the foundation for the weak solution for initial-boundary value problems and applied it to the optimal control and inverse problems. The course aims at constructing the theory for time-fractional partial differential equations, and describing the applications, so that the audience can turn to new and fruitful research areas. 1. Introduction of fractional derivatives 2. Fractional calculus 3. Definition of fractional derivatives in Sobolev spaces and properties 4.-5. Unique existence of solution to the initial −boundary value problem 6. Asymptotic behavior, maximum principle 7. Non-homogeneous boundary value problems 8. Nonlinear equations 9. Optimal control problems 10.-12. Various inverse problems
Note del Corso di Dottorato June 2019 THE TOTAL VARIATION FLOW di Jose M. Mazon Departamento de Analisis Matemtatico, Universitat de Valencia, 46100 Burjassot
June 2019

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma