Structural Basis for SARS-CoV-2 Neutralization by Human Antibodies


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, emerged in late 2019, rapidly establishing an ongoing worldwide pandemic with more than a hundred million infected and over three million dead. In response, an unprecedented global effort to develop vaccines and therapeutics is well underway. One promising approach is the identification and structural characterization of SARS-CoV-2-neutralizing antibodies, which could be used as therapeutic or prophylactic agents. Potent neutralizing antibodies directed against SARS-CoV-2 spike, isolated from infected patients, target two main regions: the receptor binding domain (RBD) and the N-terminal domain (NTD). RBD-directed neutralizing antibodies target different epitopes on the domain and neutralize the virus by blocking receptor binding. NTD-directed neutralizing antibodies target a single supersite and their mechanism of action is less clear. Circulating SARS-CoV-2 variants seem to arise in response to human antibody pressure and the molecular basis for immune evasion or accommodation of mutants can be explained from a structural perspective.

18/06/2021 15.00 Dr. Gabriele Cerutti, Zuckerman Institute Columbia University, New York, USA

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma