We address the Thrust Network Analysis (TNA), i.e. the methodology for modeling masonry vaults as a discrete network of forces in equilibrium with gravitational loads, first contributed by O’Dwyer and fully developed by Block and coworkers. Reducing the bias by the quoted authors in favor of a graphical interpretation of the method, we reformulate the original version of the TNA in order to significantly enhance the computational performances. The proposed reformulation of the TNA is also extended in a twofold manner, i.e. by including horizontal forces in the analysis and holes or free edges in the vault. Furthermore, the coefficient matrices entering the solution scheme are obtained by assembling the separate contribution of each branch, thus avoiding ad hoc node numbering and branch orientation required by alternative implementations. Numerical examples, some of which referred to vaults having a particularly complex geometry, show the effectiveness and robustness of the proposed approach in assessing the safety conditions of existing masonry vaults or in designing new ones.
14 ottobre 2022 - ore 16:00-16:45