Modern machine learning models achieve super-human accuracy on tasks such as image classification and natural-language generation, but accuracy does not tell the entire story of what these models are learning. In this talk, I will look at today's machine learning from a security and privacy perspective, and ask several fundamental questions. Could models trained on sensitive private data memorize and leak this data? When training involves crowd-sourced data, untrusted users, or third-party code, could models learn malicious functionality, causing them to produce incorrect or biased outputs? What damage could result from such compromised models?
I will illustrate these vulnerabilities with concrete examples and discuss the benefits and tradeoffs of technologies (such as federated learning) that promise to protect the integrity and privacy of machine learning models and their training data. I will then outline practical approaches towards making trusted machine learning a reality.
14/12/2022