A feature of biological evolution at the cellular level is the development of diverse organelle structures in the cytoplasmic environment. Cells contain membrane-bound organelles and membrane-less organelles. Liquid–liquid phase separation (LLPS) is gaining acceptance as a powerful mechanism to explain the formation of membrane-less organelles. Emerging evidence indicates that LLPS is important in many biological processes, such as transcription, signaling and metabolism playing a vital role in human health and disease. These discoveries describe the LLPS as a new fundamental physicochemical mechanism for organizing the biochemistry of the cells. LLPS is recognized as a mechanism for regulation of enzymatic activity. Biochemical mechanisms include concentrating reactants to enhance reaction rates or sequester enzymes and reactants from each other to reduce the reaction rate. On the other hand, LLPS might also regulate the diffusion of small molecules or important parameters for enzymatic activity (such as modulators, macromolecular crowding and changing the media physicochemical features) increasing or decreasing the reaction rate of the enzymes. Here, I will show how LLPS contributed to generate a new era for enzymic activity regulation as well as other subtle regulation mechanisms still unexplored and recent advances in the LLPS field.
28/04/2023 13:00 (Aula A CU010) Dott. Mirco DindoDepartment of Medicine and Surgery, Section of Physiology and Biochemistry University of Perugia, 06132 Perugia, Italy