Call for application 41th cycle

Bando ordinario


Educational goals and objectives

DATA SCIENCE
Data Science is an interdisciplinary field of study that has established itself in recent years in order to offer the methodological tools and technologies necessary for the management and analysis of big data and their valorisation in industry, services, and search. The phenomenon of big data has revolutionized countless sectors of economic-social activity. The phenomenon of big data has also profoundly modified the research methodologies and the development of technological innovation in numerous disciplines and applications. The main objective of this PhD is the realization of interdisciplinary research projects of Data Science that lead to the development of innovative methodologies and technologies based on the use of big data in the following fields of application:

i) Advanced digital platforms,
ii) Management of urban spaces and environmental resources
iii) Medicine and health
iv) Economic and Social Analysis

Data Science receives the decisive contribution of computer science, statistics, engineering, applied mathematics, and academic disciplines that help to understand the impact of big data in applications.

Specifiche economiche


Sapienza Scholarships Other Scolarships Departments Without scholarship
6 6 0 4

Themes, curriculum and specific competence



Borse ENTI TERZI, PARTENARIATI ESTESI, ECCELLENZA


Tematica: Graph neural networks for misinformation detection
Ente finanziatore: IPS SPA
Competenze richieste: nessuna competenza specifica richiesta
- Graph neural networks for misinformation detection
Founded by: IPS SPA
Required skills: no specific skill required

Tematica: Data science and mathematical modeling for pandemic preparedness
Ente finanziatore: FONDAZIONE ISI
Competenze richieste: nessuna competenza specifica richiesta
- Data science and mathematical modeling for pandemic preparedness
Founded by: FONDAZIONE ISI
Required skills: no specific skill required

Tematica: Utilizzo dell’Intelligenza Artificiale per l’Automation Testing, la Documentazione di Applicazioni Distribuite Complesse e la Traduzione Automatica tra Linguaggi di Programmazione
Ente finanziatore: ENGINEERING INGEGNERIA INFORMATICA SPA
Competenze richieste: nessuna competenza specifica richiesta
- Use of AI for Automation Testing, Documentation of Complex Distributed Applications, and Automatic Translation Between Programming Languages
Founded by: ENGINEERING INGEGNERIA INFORMATICA SPA
Required skills: no specific skill required

Tematica: Agentic AI for Continual Learning in Chat-Based Troubleshooting with Memorization and Forgetting
Ente finanziatore: NUOVO PIGNONE TECNOLOGIE SRL
Competenze richieste: nessuna competenza specifica richiesta
- Agentic AI for Continual Learning in Chat-Based Troubleshooting with Memorization and Forgetting
Founded by: NUOVO PIGNONE TECNOLOGIE SRL
Required skills: no specific skill required

Tematica: Retrieval Augmented Generation and Agentic AI
Ente finanziatore: SYLLOTIPS SRL
Competenze richieste: nessuna competenza specifica richiesta
- Retrieval Augmented Generation and Agentic AI
Founded by: SYLLOTIPS SRL
Required skills: no specific skill required


Admission Procedure

Qualifications assessment The Admission Committee assigns to each candidate a maximum score of 60 points. Scores are assigned according to the evaluation criteria the Board of Faculty of the Ph.D defines. Program, and reported below:

- up to 30 points for the evaluation of the curriculum (including the academic career and any other qualifications), the letters of recommendation supporting the candidate, and the publications presented by the candidate;

- up to 30 points for the research proposal submitted by the candidate. In particular, the commission evaluates the description of the state of the art, the originality and the innovative nature of the proposal, the clarity and completeness of the objectives, the methodologies and the potential results, the relevance of the proposal with respect to the themes and the objectives of the Ph.D. program. Candidates obtaining a minimum score of 36/60 in the evaluation of qualifications and of the research proposals are invited for an interview.

Oral interview The Admission Committee assigns a maximum of 60 points to each candidate
admitted to the interview. A score of at least 36 is required for the admission.The interview is in English and aims to assess the candidates' knowledge, skills, and aptitude to conduct research in the scientific areas of Data Science. The interview also includes a presentation with slides of the research proposal prepared by the candidate and of personal motivations for applying for a Ph. D. position. The duration of the interview is at most 30 minutes (the candidate's research proposal presentation must take no longer than 15 minutes). The minimum overall score for admission to the Ph.D. in Data Science is 72/120.
language INGLESE


contacts and info Email: dottoratods@diag.uniroma1.it Web: https://phd.uniroma1.it/web/DATA-SCIENCE_nD3565_IT.aspx

Curriculum studiorum

Graduation date and grade of the Master's degree
detailed list of exams including completion dates and scores of Masters's degree
History of Scholarships, Research Grants (or similar)
Certificates of Foreign Languages
Certificates of participation in post-graduate university courses
certificates of Participation in research groups
certificates of Participation in internships
Other University Awards/Degrees (e.g.: awards in competition, second degree)
Computer skills

Required documentation

§ research project
mandatory
8000 characters, spaces included, bibliographic references excluded, the file must be uploaded within le ore 23:59 del 19/06/2025

§ first letter of introduction (by a teacher)
optional, the letter must be uploaded by the referee by il 26/06/2025

§ second letter of introduction (by a teacher)
optional, the letter must be uploaded by the referee by il 26/06/2025

§ publications (a single pdf for each publication)
optional, the file must be uploaded within le ore 23:59 del 19/06/2025

§ Curriculum Vitae et Studiorum
mandatory, the file must be uploaded within le ore 23:59 del 19/06/2025

Language Skills

the candidate must know the following languages
ENGLISH

Exam Schedule

Qualifications assessment
day07/07/2025
notesnone
publication on notice boardNO
publication on the web siteYes
web sitehttps://phd.uniroma1.it/web/DATA-SCIENCE_nD3565.aspx
date of publication11/07/2025
contactsstefano.leonardi@uniroma1.it

Oral interview
day22/07/2025
notesnone
time13:00
classroomB203
addressDepartment of Computer, Control and Management Engineering (DIAG) - Via Ariosto, 25 - 00185 Roma
publication on notice boardNO
publication on the web siteYes
web sitehttps://phd.uniroma1.it/web/DATA-SCIENCE_nD3565.aspx
date of publication22/07/2025
contactsstefano.leonardi@uniroma1.it


Evaluation scale

Qualifications assessment

Valutazione titoli

Punteggio massimo complessivo per la prova/overall max score: 60

Voto di Laurea
Graduation Grade

Punteggio massimo/max score: 10
Voto di Laurea
Graduation Grade
110 e lode
110 cum laude
10,0
110
110
9,0
109 - 108
109 - 108
8,0
107 - 106
107 - 106
6,0
105 - 104
105 - 104
4,0
103 - 102
103 - 102
2,0
< 102
< 102
0,0
Media Aritmetica - Gli studenti che discuteranno la tesi prima della data stabilita per l’inizio della valutazione dei titoli sono tenuti a comunicare via e-mail al/la Presidente della Commissione il voto di laurea conseguito, mentre per coloro che discuteranno la tesi dopo la data stabilita per la valutazione dei titoli, ma comunque prima del 31 ottobre 2025, la griglia precedente è sostituita dalla seguente media aritmetica:
Average Grade - Students who will complete their Master degree before the date set for the evaluation of qualifications are required to communicate the final degree marks to the President of the Committee by e-mail. For students who will complete their Master degree after the date set for the evaluation of qualifications, but in any case before October 31, 2025, the above grid is replaced by the following:
29 - 30
29 - 30
10,0
28 – 28.99
28 – 28.99
8,0
27 - 27.99
27 - 27.99
6,0
26 - 26.99
26 - 26.99
4,0
25 - 25.99
25 - 25.99
2,0
< 25
< 25
0,0

Valutazione Progetto
Project Assessment

Punteggio massimo/max score: 30
Conoscenza dello stato dell’arte
Knowledge of the state of the art
5,0
Originalità e contenuto innovativo
Innovative aspects of the project
10,0
Chiarezza e completezza dell’esposizione degli obiettivi, delle metodologie e dei potenziali risultati
Clarity and completeness of the presentation of objectives, methodologies, and potential results
5,0
Fattibilità del progetto
Feasibility of the project
5,0
Pertinenza del progetto con gli obiettivi formativi del dottorato
Relevance of the project to the educational objectives of the PhD programme
5,0

Pubblicazioni (Max 7 Punti)
Publications (Max 7 Points)

Punteggio massimo/max score: 7
Pubblicazione Journal/Conference
Journal/Conference Publication
4,0
Contributo a convegno senza revisione
Contribution to a lecture/ congress w/o peer review
2,0
Rapporto Tecnico
Technical Report
2,0

Esperienze di Ricerca (Max 5 Punti)
Research Experiences (Max 5 Points)

Punteggio massimo/max score: 5
Esperienze di ricerca all’estero (compresa tesi Erasmus)
Reserarch experience abroad (including Erasmus thesis)
5,0
Contratti di collaborazione alla ricerca
Collaboration contracts
5,0
Corsi di formazione alla ricerca
Training courses for researchers
1,0

Partecipazione a programmi di eccellenza (Max 5 Punti)
Excellence program participation (Max 5 Points)

Punteggio massimo/max score: 5
Partecipazione a Scuole di Alta Formazione
Excellence School Attendance
5,0
Partecipazione a Percorsi di Eccellenza
Participation to Excellence Programs
3,0

Altri Titoli (Max 3 Points)
Other Titles (Max 3 Points)

Punteggio massimo/max score: 3
Certificazione di Lingua Straniera
Foreign Language Certificates
2,0
Esperienza Professionale
Job Experience
3,0


Oral interview

Prova orale

Punteggio massimo complessivo per la prova/overall max score: 60

Valutazione Prova Orale
Oral Assessment

Punteggio massimo/max score: 60
Alla prova orale vengono ammessi i candidati che nel complesso della valutazione dei titoli e del progetto abbiano conseguito la votazione di almeno 36/60. Durante la prova orale verranno approfonditi e chiariti aspetti riguardanti i titoli presentati e il progetto. La prova orale si intende superata se il candidato ha ottenuto la votazione di 36/60. Il punteggio minimo complessivo per l’ammissione al dottorato di ricerca è di 72/120
Candidates who have obtained a grade of at least 36/60 in the evaluation of the qualifications and in the project are admitted to the oral exam. During the oral test, aspects concerning the titles presented and the project will be deepened and clarified. The oral examination is considered passed if the candidate has obtained a score of 36/60. The minimum total score for admission to the Ph.D. Program is 72/120.



© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma