MARCO BERNARDI

Dottore di ricerca

ciclo: XXXII



Titolo della tesi: Exploiting local features in modern Computer Vision

Computer Vision is an interdisciplinary field which refers to replicating the human vision system and enabling machines to gain high-level understanding from digital images or videos. It plays an important role in many applications, which have become commonplace today such as face recognition, anomaly detection, behaviour recognition, re-identification, image segmentation, and so on. During the last years, the widespread of new visual sensors (i.e., Pan Tilt Zoom camera, depth cameras, acoustic sensors, etc.) have enlarged the number of possible computer vision applications. Particular attention has been focused on those applications in which unconstrained still images and videos have to be processed. This has raised at the same time new research challenges. Among the most interesting topics one which is receiving a growing interest is the identification and extraction of distinct features. The local features are one of the most used features in the current literature. They allow to detect and extract features, which are robust to several types of transformation or distortion (i.e., occlusion, rotation, scale). However, this type of features has been mainly used in RGB camera-based applications. The goal of this thesis is presenting and demonstrating the efficacy of novel computer vision research contributions to different application scenarios as background modelling, RGB-D data fusion for event detection and underwater image compression and transmission. In these applications, we will show how local features can be used on unconstrained environment and with image and videos acquired from different visual sensors.

Produzione scientifica

11573/1684968 - 2022 - AURORA, a multi-sensor dataset for robotic ocean exploration
Bernardi, M.; Hosking, B.; Petrioli, C.; Bett, B. J.; Jones, D.; Huvenne, V. A. I.; Marlow, R.; Furlong, M.; Mcphail, S.; Munafo, A. - 01a Articolo in rivista
rivista: THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH ([London] : Sage Publications) pp. 461-469 - issn: 1741-3176 - wos: WOS:000753524900001 (5) - scopus: 2-s2.0-85124870913 (13)

11573/1612222 - 2020 - A Data Compression Module for the SUNSET Platform
Avola, D.; Bernardi, M.; Pannone, D.; Petrioli, C. - 04b Atto di convegno in volume
congresso: 2020 Global Oceans: Singapore - U.S. Gulf Coast, OCEANS 2020 (usa)
libro: Global Oceans 2020. Singapore – U.S. Gulf Coast - (978-1-7281-5446-6)

11573/1254454 - 2020 - Online Separation of Handwriting from Freehand Drawing Using Extreme Learning Machines
Avola, Danilo; Bernardi, Marco; Cinque, Luigi; Foresti, Gian Luca; Massaroni, Cristiano - 01a Articolo in rivista
rivista: MULTIMEDIA TOOLS AND APPLICATIONS (Kluwer Academic Publishers:Journals Department, PO Box 322, 3300 AH Dordrecht Netherlands:011 31 78 6576050, EMAIL: frontoffice@wkap.nl, kluweronline@wkap.nl, INTERNET: http://www.kluwerlaw.com, Fax: 011 31 78 6576254) pp. - - issn: 1380-7501 - wos: WOS:000519474500013 (7) - scopus: 2-s2.0-85064282148 (8)

11573/1139418 - 2019 - Exploiting Recurrent Neural Networks and Leap Motion Controller for the Recognition of Sign Language and Semaphoric Hand Gestures
Avola, D.; Bernardi, M.; Cinque, L.; Foresti, G. L.; Massaroni, C. - 01a Articolo in rivista
rivista: IEEE TRANSACTIONS ON MULTIMEDIA (Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ) pp. 234-245 - issn: 1520-9210 - wos: WOS:000454253700020 (112) - scopus: 2-s2.0-85050007206 (150)

11573/1345892 - 2019 - A new descriptor for Keypoint-Based background modeling
Avola, Danilo; Bernardi, Marco; Cascio, Marco; Cinque, Luigi; Foresti, Gian Luca; Massaroni, Cristiano - 04b Atto di convegno in volume
congresso: International Conference on Image Analysis and Processing (Trento)
libro: Image Analysis and Processing -- ICIAP 2019 - (978-3-030-30642-7)

11573/1203711 - 2019 - Fusing depth and colour information for human action recognition
Avola, Danilo; Bernardi, Marco; Foresti, Gian Luca - 01a Articolo in rivista
rivista: MULTIMEDIA TOOLS AND APPLICATIONS (Dordrecht : Kluwer) pp. 5919-5939 - issn: 1573-7721 - wos: WOS:000464763100044 (26) - scopus: 2-s2.0-85057569221 (32)

11573/1291504 - 2019 - The diver system: multimedia communication and localization using underwater acoustic networks
Bernardi, Marco; Cardia, Christian; Gjanci, Petrika; Monterubbiano, Andrea; Petrioli, Chiara; Picari, Luigi; Spaccini, Daniele - 04b Atto di convegno in volume
congresso: 20th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (IEEE WoWMoM 2019) (Washington; United States)
libro: IEEE WoWMoM 2019 - (978-172810270-2)

11573/1062615 - 2018 - Combining Keypoint Clustering and Neural Background Subtraction for Real-time Moving Object Detection by PTZ Cameras
Avola, Danilo; Bernardi, Marco; Cinque, Luigi; Luca Foresti, Gian; Massaroni, Cristiano - 04b Atto di convegno in volume
congresso: 7th International Conference on Pattern Recognition Applications and Methods (Funchal, Portogallo)
libro: Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, - (978-989-758-276-9)

11573/1017984 - 2017 - A Machine Learning Approach for the Online Separation of Handwriting from Freehand Drawing
Avola, Danilo; Bernardi, Marco; Cinque, Luigi; Foresti, Gian Luca; Marini, Marco Raoul; Massaroni, Cristiano - 04b Atto di convegno in volume
congresso: Image Analysis and Processing - ICIAP 2017 (Catania, Italy)
libro: ICIAP 2017: Image Analysis and Processing - ICIAP 2017 - (978-3-319-68559-5)

11573/1018039 - 2017 - Adaptive Bootstrapping Management by Keypoint Clustering for Background Initialization
Avola, Danilo; Bernardi, Marco; Cinque, Luigi; Luca Foresti, Gian; Massaroni, Cristiano - 01a Articolo in rivista
rivista: PATTERN RECOGNITION LETTERS (Elsevier BV:PO Box 211, 1000 AE Amsterdam Netherlands:011 31 20 4853757, 011 31 20 4853642, 011 31 20 4853641, EMAIL: nlinfo-f@elsevier.nl, INTERNET: http://www.elsevier.nl, Fax: 011 31 20 4853598) pp. 110-116 - issn: 0167-8655 - wos: WOS:000418101300016 (21) - scopus: 2-s2.0-85032264197 (22)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma