EMILIAN POSTOLACHE

Dottore di ricerca

ciclo: XXXVI


co-supervisore: Prof. Emanuele Rodolà

Titolo della tesi: From Source Separation to Compositional Music Generation

This thesis proposes a journey into sound processing through deep learning, particularly generative models, exploring the compositional structure of sound, which is layered in different sources that compose the final auditory experience. The first part of the text focuses on the problem of separating the sources from mixtures, initially using a deterministic separator trained via adversarial losses in a permutation invariant manner and then exploring the setting of Bayesian inference through the use of latent autoregressive models. In the second half of the thesis, we focus on the continuous musical setting (as opposed to symbolic), where the sources that compose the sound are interdependent. By modeling this interdependence probabilistically, we develop diffusion models that allow for the compositional processing of the different stems present in tracks, thus not only separating them but generating them in a conditioned manner (accompaniments). Subsequently, we generalize these models to text conditioned diffusion models without requiring supervised data. We conclude the thesis by discussing possible developments in the compositional generation of audio.

Produzione scientifica

11573/1725167 - 2024 - Syncfusion: Multimodal Onset-Synchronized Video-to-Audio Foley Synthesis
Comunità, M.; Gramaccioni, R. F.; Postolache, E.; Rodolà, E.; Comminiello, D.; Reiss, J. D. - 04b Atto di convegno in volume
congresso: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Seoul, Korea, Republic of)
libro: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings - ()

11573/1672044 - 2023 - Latent Autoregressive Source Separation
Postolache, Emilian; Mariani, Giorgio; Mancusi, Michele; Santilli, Andrea; Cosmo, Luca; Rodola', Emanuele - 04b Atto di convegno in volume
congresso: The Thirty-Seventh AAAI Conference on Artificial Intelligence (Washington DC, USA)
libro: Proceedings of AAAI - ()

11573/1706544 - 2023 - Accelerating Transformer Inference for Translation via Parallel Decoding
Santilli, Andrea; Severino, Silvio; Postolache, Emilian; Maiorca, Valentino; Mancusi, Michele; Marin, Riccardo; Rodola, Emanuele - 04b Atto di convegno in volume
congresso: The 61st Annual Meeting of the Association for Computational Linguistics (Toronto, Canada)
libro: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) - ()

11573/1485476 - 2020 - A parametric analysis of discrete Hamiltonian functional maps
Postolache, E.; Fumero, M.; Cosmo, L.; Rodola, E. - 01a Articolo in rivista
rivista: COMPUTER GRAPHICS FORUM (Blackwell Publishing Limited:9600 Garsington Road, Oxford OX4 2DQ United Kingdom:011 44 1865 776868 , (781)388-8200, EMAIL: agentservices@oxon.blackwellpublishing.com, e-help@blackwellpublishers.co.uk, INTERNET: http://www.blackwellpublishing.com, Fax: 011 44 1865 714591) pp. 103-118 - issn: 0167-7055 - wos: WOS:000558636000009 (4) - scopus: 2-s2.0-85089368773 (6)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma