RAMONA CENNAMO

Dottoressa di ricerca

ciclo: XXXVI



Titolo della tesi: Super-Resolution of Sentinel-2 Imagery for Remote Sensing Applications

The increasing demand for high-resolution satellite imagery in various applications such as environmental monitoring, urban planning, precision agriculture, and disaster response has led to significant advancements in super-resolution (SR) techniques. This research focuses on enhancing the spatial resolution of Sentinel-2 imagery using deep learning-based SR methodologies, leveraging convoluneural networks (CNNs) and generative adversarial networks (GANs). The study evaluates the effectiveness of these techniques in improving image clarity and usability for remote sensing applications.

Produzione scientifica

11573/1618808 - 2022 - Orbital stability analysis and photometric characterization of the second Earth Trojan asteroid 2020 XL5
Santana-Ros, T.; Micheli, M.; Faggioli, L.; Cennamo, R.; Devogele, M.; Alvarez-Candal, A.; Oszkiewicz, D.; Ramirez, O.; Liu, P. -Y.; Benavidez, P. G.; Campo Bagatin, A.; Christensen, E. J.; Wainscoat, R. J.; Weryk, R.; Fraga, L.; Briceno, C.; Conversi, L. - 01a Articolo in rivista
rivista: NATURE COMMUNICATIONS (London: Nature Publishing Group-Springer Nature) pp. 447- - issn: 2041-1723 - wos: WOS:000749535300030 (0) - scopus: 2-s2.0-85123973611 (0)

11573/1618815 - 2021 - Elimination of a virtual impactor of 2006 QV89via deep non-detection
Hainaut, O. R.; Micheli, M.; Cano, J. L.; Martin, J.; Faggioli, L.; Cennamo, R. - 01a Articolo in rivista
rivista: ASTRONOMY & ASTROPHYSICS (Les Ulis: EDP Sciences, 2001- Berlin; Heidelberg; New York: Springer, 1969-2000) pp. A124- - issn: 0004-6361 - wos: WOS:000697540700008 (0) - scopus: 2-s2.0-85115791183 (0)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma