GIULIA DOMINIJANNI

PhD Graduate

PhD program:: XXXVI


supervisor: Domenico Vitulano
co-supervisor: Vittoria Bruni

Thesis title: SMARTFAI: smart farming with artificial intelligence

This thesis, combining the themes of agriculture and AI, aims to provide an innovative solution in the agricultural sector. SMARTFAI (Smart Farming with Artificial Intelligence) is an industrial PhD project that aims to develop advanced and innovative artificial intelligence techniques to embed in monitoring systems. Additionally, the study and development of advanced vision models aim to enhance speed and efficiency of processes. Precision agriculture (PA), also known as smart farming, is an advanced approach that utilizes technology and data to optimize various aspects of crop production. This method involves the application of information technology, data analysis, and automation to enhance efficiency, productivity, and sustainability of the sector. Employing precision agriculture techniques, farmers can make more informed decisions about irrigation, fertilization, pest control, and harvesting. In addition, this approach contributes to resource wastage minimization, and environmental impact reduction, and improves overall yield and profitability in modern farming practices. Based on preliminary investigations, the research project has been developed focusing on grapevine cultivation, which is widely spread both in Italy and abroad and is simultaneously highly profitable. Specifically, the proposed approaches address one of the challenges that cultivation faces in the pre-harvest phase, namely, yield estimation. This is a common issue in precision agriculture for several reasons. Therefore, the thesis explores innovative methodologies aimed at achieving more accurate and faster yield predictions compared to manual methods through two classification approaches. Both methods include pixel-wise segmentation techniques for identifying grape bunches. Experimental results illustrate the efficacy of these methodologies in efficiently identifying grape pixels from RGB images containing yellow and blue bunches. The two automatic AI methods utilize Support Vector Machine and Convolutional Neural Networks as classification models, relying on visual contrast-based features defined according to grape bunch color visual perception. Extensive experimental results demonstrate that the proposed methods can accurately segment grapes even in uncontrolled acquisition conditions and with a limited computational load. Furthermore, these approaches require a small training set, making them suitable for on-site and real-time applications that are implementable on smart devices in a user-friendly fashion, making them usable and even set up by winemakers.

Research products

11573/1675441 - 2023 - A machine-learning approach for automatic grape-bunch detection based on opponent colors
Bruni, Vittoria; Dominijanni, Giulia; Vitulano, Domenico - 01a Articolo in rivista
paper: SUSTAINABILITY (Basel : MDPI) pp. 4341- - issn: 2071-1050 - wos: WOS:000948274100001 (1) - scopus: 2-s2.0-85149932598 (1)

11573/1704893 - 2023 - A Perception-guided CNN for Grape Bunch Detection
Bruni, Vittoria; Dominijanni, Giulia; Vitulano, Domenico; Ramella, Giuliana - 04d Abstract in atti di convegno
conference: 21st IMACS World Congress (Roma)
book: IMACS Series in Computational and Applied Mathematics - ()

11573/1704888 - 2022 - Machine learning and visibility laws for smart farming
Dominijanni, Giulia - 04f Poster
conference: International computer vision summer school (Hotel Village Baia Samuele)
book: ICVSS 2022 - ()

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma