DIEGO MARIA PINTO

Dottore di ricerca

ciclo: XXXV


supervisore: Laura Palagi

Titolo della tesi: Mathematical optimization and learning models to address uncertainties and sustainability of supply chain management

Green Supply Chain Management can achieve its goals through innovative management approaches that consider sustainable efficiency and profitability to be clearly linked by the savings that result from applying optimization techniques. Besides sustainability, uncertainty is another critical issue in Green Supply Chain Management. Considering a deterministic approach would definitely fail to provide concrete decision support when modeling those kinds of scenarios. According to various hypotheses and strategies, uncertainties can be addressed by exploiting several modeling approaches arising from statistics, statistical learning and mathematical programming. In this dissertation, mathematical and learning models are exploited according to different approaches and models combinations, providing new formulations and frameworks to address strategic and operational problems of GSCM under uncertainty. All the models and frameworks presented in this dissertation have been tested on real-world instances.

Produzione scientifica

11573/1717166 - 2024 - Optimal Network Design for Municipal Waste Management: Application to the Metropolitan City of Rome
Boresta, Marco; Croella, Anna Livia; Gentile, Claudio; Palagi, Laura; Pinto, Diego Maria; Stecca, Giuseppe; Ventura, Paolo - 01a Articolo in rivista
rivista: LOGISTICS (MDPI AG, Basel, Switzerland) pp. - - issn: 2305-6290 - wos: WOS:001323569100001 (0) - scopus: 2-s2.0-85205133272 (0)

11573/1604678 - 2021 - Robust Optimal Planning of Waste Sorting Operations
Pinto, D. M.; Gentile, C.; Stecca, G. - 02a Capitolo o Articolo
libro: AIRO Springer Series - (978-3-030-86840-6; 978-3-030-86841-3)

11573/1604676 - 2021 - Optimal planning of waste sorting operations through mixed integer linear programming
Pinto, D. M.; Stecca, G. - 02a Capitolo o Articolo
libro: AIRO Springer Series - (978-3-030-63071-3; 978-3-030-63072-0)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma