ANGELO DI MAMBRO

PhD Graduate

PhD program:: XXXVII


supervisor: Prof. Danilo Avola
co-supervisor: Prof. Daniele Pannone

Thesis title: Beyond Brainwaves: Exploring Emotions, Identity, and Motor Imagery Through EEG-based BCI.

An Electroencephalography (EEG)-based Brain-Computer Interface (BCI) is a system able to connect the human brain and external devices by analyzing EEG signals, translating the brain activity patterns into instructions for an interactive application. Initially, EEG-based BCI solutions were developed for medical purposes in clinical and rehabilitation applications, primarily to assist patients in regaining normal life functions. Beyond this original goal, these systems have also gained importance in non-medical fields such as cybersecurity and neuroscience applications. On this account, this thesis shows how the EEG signal can be directly exploited for solving person biometric identification, emotion recognition, and limbs activation classification tasks. Since most existing EEG-based biometric systems don’t exploit the time-frequency information of EEG signals, this thesis introduces a novel identification system using graph representations, where nodes represent EEG channels signals and edges denote the Functional Connectivity (FC) measure between pairs of channels. The model, based on Graph Convolutional Neural Networks (GCNNs), integrates spatio-temporal and functional features, capturing local and global brain activity. Tested on PhysioNet and Multi-subject, Multi-session, and Multi-task Database for investigation of EEG Commonality and Variability (M3CV) datasets, the method demonstrated strong generalization across various human states (resting and active) and outperformed State-Of-the-Art (SOTA) EEG biometrics techniques in specific tasks. Regarding emotion recognition, has been proposed an innovative framework, namely Empátheia, able to encode EEG signals as compact images, preserving the original spatio-temporal information, and recognizing the associated emotion. Using the Processing and transfeR of Interaction States and Mappings through Image-based eNcoding (PRISMIN) framework, the original EEG signals are encoded as images, or atlases, following a spatio-temporal layout. Then, different deep learning models have been designed and tuned to classify the emotions captured in the produced atlases. Tests on the SJTU Emotion EEG Dataset (SEED) dataset showed high performance and efficient data representation, suggesting new possibilities for EEG-based emotion analysis. Instead, a novel multi-stream 1D Convolutional Neural Network (CNN) architecture is proposed for limbs activation classification. This method processes EEG signals through four convolutional streams with varying kernel sizes to capture information at different time scales. The resulting features are combined and fed to a dense classifier to determine limbs movement. Experiments on the PhysioNet EEG dataset showed that this model outperforms existing methods in both cross-subject and intra-subject settings.

Research products

11573/1713404 - 2024 - Spatio-Temporal Image-Based Encoded Atlases for EEG Emotion Recognition
Avola, D.; Cinque, L.; Di Mambro, A.; Fagioli, A.; Marini, M. R.; Pannone, D.; Fanini, B.; Foresti, G. L. - 01a Articolo in rivista
paper: INTERNATIONAL JOURNAL OF NEURAL SYSTEMS (World Scientific Publishing Company:PO Box 128, Farrer Road, Singapore 912805 Singapore:011 65 6 4665775, EMAIL: journal@wspc.com.sg, INTERNET: http://www.wspc.com.sg, http://www.worldscinet.com, Fax: 011 65 6 4677667) pp. 1-18 - issn: 0129-0657 - wos: WOS:001191214900001 (6) - scopus: 2-s2.0-85188832275 (7)

11573/1713410 - 2024 - Multi-Stream 1D CNN for EEG Motor Imagery Classification of Limbs Activation
Avola, D.; Cinque, L.; Di Mambro, A.; Lanzino, R.; Pannone, D.; Scarcello, F. - 01a Articolo in rivista
paper: IEEE ACCESS (Piscataway NJ: Institute of Electrical and Electronics Engineers) pp. 83940-83951 - issn: 2169-3536 - wos: WOS:001251599400001 (0) - scopus: 2-s2.0-85196068924 (0)

11573/1696511 - 2023 - LieToMe: An LSTM-Based Method for Deception Detection by Hand Movements
Avola, D.; Cinque, L.; De Marsico, M.; Di Mambro, A.; Fagioli, A.; Foresti, G. L.; Lanzino, R.; Scarcello, F. - 04b Atto di convegno in volume
conference: Proceedings of the 22nd International Conference on Image Analysis and Processing, ICIAP 2023 (ita)
book: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - (978-3-031-43147-0; 978-3-031-43148-7)

11573/1599991 - 2022 - Low-altitude aerial video surveillance via one-class svm anomaly detection from textural features in uav images
Avola, D.; Cinque, L.; Di Mambro, A.; Diko, A.; Fagioli, A.; Foresti, G. L.; Marini, M. R.; Mecca, A.; Pannone, D. - 01a Articolo in rivista
paper: INFORMATION (Basel: Molecular Diversity Preservation International) pp. 1-21 - issn: 2078-2489 - wos: WOS:000757982800001 (16) - scopus: 2-s2.0-85121686772 (23)

11573/1410924 - 2019 - Comparing related phylogenetic trees
Calamoneri, T.; Di Mambro, A.; Sinaimeri, B. - 04d Abstract in atti di convegno
conference: 20th Italian Conference on Theoretical Computer Science (ICTCS 2019) (Como, Italy)
book: Proc. 20th Italian Conference on Theoretical Computer Science (ICTCS 2019), CEUR Workshop Proceedings - ()

11573/1077363 - 2018 - Characteristics of a nationwide cohort of patients presenting with Isolated Hypogonadotropic Hypogonadism (IHH)
Bonomi, Marco; Vezzoli, Valeria; Krausz, Csilla Gabriella; Guizzardi, Fabiana; Vezzani, Silvia; Simoni, Manuela; Bassi, Ivan; Duminuco, Paolo; Di Iorgi, Natascia; Giavoli, Claudia; Pizzoccaro, Alessandro; Russo, Gianni; Moro, Mirella; Fatti, Letizia Maria; Ferlin, Alberto; Mazzanti, Laura; Zatelli, Maria Chiara; Cannavò, Salvatore; Isidori, Andrea M; Pincelli, Angela I; Prodam, Flavia; Mancini, Antonio; Limone, Paolo; Tanda, Maria Laura; Gaudino, Rossella; Salerno, Mariacarolina; Pregnolato, Francesca; Maghnie, Mohammad; Maggi, Mario; Persani, Luca; Aimaretti, G; Altobelli, M; Ambrosio, Mr; Andrioli, M; Angeletti, G; Arecco, F; Arnaldi, G; Arosio, M; Balsamo, A; Baldassarri, M; Bartalena, L; Bazzoni, N; Beccaria, L; Beck-Peccoz, P; Bellastella, G; Bellizzi, M; Benedicenti, F; Bernasconi, S; Bizzarri, C; Bona, G; Bonadonna, S; Borretta, G; Boschetti, M; Brunani, A; Brunelli, V; Buzi, F; Cacciatore, C; Cangiano, B; Cappa, M; Casalone, R; Cassio, A; Cavarzere, P; Cherubini, V; Ciampani, T; Cicognani, D; Cignarelli, A; Cisternino, M; Colombo, P; Corbetta, S; Corciulo, N; Corona, G; Cozzi, R; Crivellaro, C; Dalle Mule, I; Danesi, L; D'elia, Av; Degli Uberti, E; De Leo, S; Della Valle, E; De Marchi, M; Di Iorgi, N; Di Mambro, A; Fabbri, A; Foresta, C; Forti, G; Franceschi, Ar; Garolla, A; Ghezzi, M; Giacomozzi, C; Giusti, M; Grosso, E; Guabello, G; Guarneri, Mp; Grugni, G; Isidori, Am; Lanfranco, F; Lania, A; Lanzi, R; Larizza, L; Lenzi, A; Loche, S; Loli, P; Lombardi, V; Maggio, Mc; Mandrile, G; Manieri, C; Mantovani, G; Marelli, S; Marzullo, M; Mencarelli, Ma; Migone, N; Motta, G; Neri, G; Padova, G; Parenti, G; Pasquino, B; Pia, A; Piantanida, E; Pignatti, E; Pilotta, A; Pivetta, B; Pollazzon, M; Pontecorvi, A; Porcelli, P; Pozzan, Gb; Pozzobon, G; Radetti, G; Razzore, P; Rocchetti, L; Roncoroni, R; Rossi, G; Sala, E; Salvatoni, A; Salvini, F; Secco, A; Segni, M; Selice, R; Sgaramella, P; Sileo, F; Sinisi, Aa; Sirchia, F; Spada, A; Tresoldi, A; Vigneri, R; Weber, G; Zucchini, S. - 01a Articolo in rivista
paper: EUROPEAN JOURNAL OF ENDOCRINOLOGY (Bristol: BioScientifica Oslo: Scandinavian University Press, 1994-) pp. 23-32 - issn: 0804-4643 - wos: WOS:000419119500008 (76) - scopus: 2-s2.0-85040464673 (76)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma