SIMONE BORDONI

Dottore di ricerca

ciclo: XXXVII


relatore: Stefano Giagu
co-supervisore: Aleandro Nisati

Titolo della tesi: Machine Learning and Quantum Computing

This thesis presents original contributions at the intersection of quantum computing and machine learning, investigating how these two fields can benefit from each other. The first part of the thesis presents two applications of machine learning techniques in quantum computing. The first contribution involves the use of artificial neural networks for the decoding of quantum error correction codes, resulting in faster decoding times while maintaining a high level of accuracy. The originality of this work lies in the application of explainable machine learning techniques to both improve the decoding performance and to provide insights into the decoding process. The second contribution introduces a novel technique based on reinforcement learning to characterize and simulate the noise affecting a quantum chip. This technique reduces the heuristic assumption on the noise model, making it more adaptable to the specific noise characteristics of the quantum device. In the second part of the thesis, we demonstrate, with two examples, how it is possible to im plement machine learning algorithms on quantum devices by replacing artificial neural networks with parametrized quantum circuits. The first contribution in this section introduces a quantum anomaly detection algorithm, applied to the field of high-energy physics. This algorithm allows for the identification of anomalous patterns in quantum data, maintaining a level of accuracy compa rable to classical algorithms. The novelty of this work lies in the first use of quantum circuits for the task of anomaly detection in a muon drift chamber trigger system, with possible future appli cations to quantum detector systems in high-energy physics experiments. The second contribution presents the quantum version of a generative diffusion model, able to sample quantum states from a well-defined distribution. This first implementation of a quantum diffusion model is not meant to outperform classical models, but rather to show potential advantages and limitations of these kinds of algorithms. The aim of the thesis is to show how quantum computing can benefit from machine learning, and how machine learning can be implemented on quantum devices, setting the stage for future advancements in both fields.

Produzione scientifica

11573/1755867 - 2025 - Hybrid and hardware-oriented approaches for quantum diffusion models
Cacioppo, Andrea; Colantonio, Lorenzo; Bordoni, Simone; Giagu, Stefano - 04b Atto di convegno in volume
congresso: 2025 International joint conference on neural networks (IJCNN) (Roma)
libro: International joint conference on neural networks 2025 - (9798331510435)

11573/1710193 - 2024 - Qibolab. An open-source hybrid quantum operating system
Efthymiou, S.; Orgaz-Fuertes, A.; Carobene, R.; Cereijo, J.; Pasquale, A.; Ramos-Calderer, S.; Bordoni, S.; Fuentes-Ruiz, D.; Candido, A.; Pedicillo, E.; Robbiati, M.; Tan, Y. P.; Wilkens, J.; Roth, I.; Latorre, J. I.; Carrazza, S. - 01a Articolo in rivista
rivista: QUANTUM (Vienna : Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften) pp. 1-20 - issn: 2521-327X - wos: WOS:001163194300001 (4) - scopus: 2-s2.0-85185780293 (5)

11573/1710194 - 2023 - Quantum circuit noise simulation with reinforcement learning
Bordoni, S.; Papaluca, A.; Buttarini, P.; Sopena, A.; Carrazza, S.; Giagu, S. - 04b Atto di convegno in volume
congresso: 2023 International workshop on AI for quantum and quantum for AI, AIQxQIA 2023 (Italy)
libro: CEUR Workshop Proceedings - ()

11573/1681704 - 2023 - Convolutional neural network based decoders for surface codes
Bordoni, Simone; Giagu, Stefano - 01a Articolo in rivista
rivista: QUANTUM INFORMATION PROCESSING (Springer Science+Business Media B.V.) pp. - - issn: 1570-0755 - wos: WOS:000953141500001 (8) - scopus: 2-s2.0-85150891453 (8)

11573/1672084 - 2023 - Long-lived particles anomaly detection with parametrized quantum circuits
Bordoni, Simone; Stanev, Denis; Santantonio, Tommaso; Giagu, Stefano - 01a Articolo in rivista
rivista: PARTICLES (Basel : MDPI AG) pp. 297-311 - issn: 2571-712X - wos: WOS:000959687400001 (4) - scopus: 2-s2.0-85151087873 (8)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma