SERENA ROCCI

Dottoressa di ricerca

ciclo: XXXVII


supervisore: Prof. ssa Angela Pistoia

Titolo della tesi: Blow-up and Clustering Configurations: New Solutions to the Brézis-Nirenberg Problem

This thesis investigates a nonlinear elliptic partial differential equation on bounded domains, involving the critical Sobolev exponent: the well-known Brézis-Nirenberg problem with Dirichlet boundary conditions. We focus on establishing new types of solutions that deepen our understanding of blow-up and clustering phenomena within this framework. Our findings include the existence of positive solutions in dimension 4 that exhibit blow-up at a single point of the domain in the non-autonomous case. Additionally, we present a novel type of sign-changing solution that clusters at a single boundary point. While such clustering configurations have been observed in other equations, this is the first result of its kind for the Brézis-Nirenberg problem.

Produzione scientifica

11573/1697284 - 2024 - Nodal cluster solutions for the Brezis-Nirenberg problem in dimensions N≥7
Musso, Monica; Rocci, Serena; Vaira, Giusi - 01a Articolo in rivista
rivista: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS (Heidelberg ; Berlin : Springer) pp. - - issn: 1432-0835 - wos: (0) - scopus: (0)

11573/1697244 - 2023 - The Brezis-Nirenberg problem in 4D
Pistoia, Angela; Rocci, Serena - 01a Articolo in rivista
rivista: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S (USA, Springfield: American Institute of Mathematical Sciences P.O. Box 2604 Springfield, MO 65801-2604, USA) pp. -0 - issn: 1937-1632 - wos: WOS:001092002800001 (0) - scopus: (0)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma