MATTIA PECCI

PhD Graduate

PhD program:: XXXVI


advisor: prof. Di Bernardino

Thesis title: Integration of satellite and in situ data to measure CO2 fluxes in the Mediterranean Sea

Although carbon dioxide stands as a primary driver of future climate, the carbon cycle lacks complete characterization, particularly in the ocean. Satellite measurements of pCO2 are possible through measurable proxies. Given the complexity of carbon cycle processes, the use of regional optimization has often proven successful. Despite the Mediterranean Sea's climate sensitivity, insitu measurements of carbon-related quantities are sparse and there is a lack of literature-acknowledged regional satellite algorithms to estimate marine pCO2. This study introduces the first year and a half of measurements made at Lampedusa of ocean pCO2 and computed CO2 fluxes, which represent the first data available in the Central Mediterranean regarding flux calculation. The net effect, over one whole year, is an absorption of (2.23 +/- 0.04)x10-2 kg(CO2)/m2, and preliminary analysis suggests the impact of the 2022-2023 marine heatwave leads to a substantial reduction of the ocean CO2 absorption. Gaps are present and more in-depth analyses are needed. Regional-optimized algorithms for pCO2 estimation using satellite-derived quantities are introduced, employing both traditional and machine learning multiple regression approaches. The best traditional model, which estimates pCO2 as a function of SST, CHL and PAR, exhibits a bias of 4.4 μatm, RMSD of 13.0 μatm, and a coefficient of determination of 0.94. The leading machine learning model, which relates pCO2 to SST, achieves a bias of -1.4 μatm, RMSD of 25.0 μatm, and an R2 of 0.76. The limited dataset size poses a challenge, particularly in machine learning model training. The models were also used to compute fluxes. Both approaches demonstrated good agreement, with R2 values of 0.75 for the traditional approach and 0.64 for the machine learning approach. The biases were -0.081x10-9 kg m-2 s-1 and -0.30x10-9 kg m-2 s-1, and RMSD values were 1.3x10-9 kg m-2 s-1 and 1.5x10-9 kg m-2 s-1 for the traditional and machine learning approaches, respectively. While a satellite-based approach shows promise, there is room for improvement, including the use of a broader dataset for further advancements.

Research products

11573/1701433 - 2024 - Validation of photosynthetically active radiation by OLCI on Sentinel-3 against ground-based measurements in the central Mediterranean and possible aerosol effects
Pecci, Mattia; Colella, Simone; Di Iorio, Tatiana; Meloni, Daniela; Monteleone, Francesco; Pace, Giandomenico; Sferlazzo, Damiano Massimiliano; Di Sarra, Alcide Giorgio - 01a Articolo in rivista
paper: EUROPEAN JOURNAL OF REMOTE SENSING (FIRENZE, ITALY: ASSOCIAZIONE ITALIANA TELERILEVAMENTO, UNIVERSITA' DEGLI STUDI FIRENZE, DIPARTIMENTO SCIENZE DELLA TERRA) pp. 1-18 - issn: 2279-7254 - wos: WOS:001154549300001 (1) - scopus: 2-s2.0-85183849687 (1)

11573/1654210 - 2022 - Interaction of the Sea Breeze with the Urban Area of Rome: WRF Mesoscale and WRF Large-Eddy Simulations Compared to Ground-Based Observations
Di Bernardino, Annalisa; Mazzarella, Vincenzo; Pecci, Mattia; Casasanta, Giampietro; Cacciani, Marco; Ferretti, Rossella - 01a Articolo in rivista
paper: BOUNDARY-LAYER METEOROLOGY (Dordrecht: Reidel) pp. - - issn: 0006-8314 - wos: WOS:000853288200001 (8) - scopus: 2-s2.0-85138059860 (9)

11573/1668322 - 2022 - Snow-Mantle Remote Sensing from Spaceborne Sar Interferometry Using a Model-Based Synergetic Retrieval Approach in Central Apennines
Palermo, G.; Raparelli, E.; Romero, N. A.; Manzi, M. P.; Papa, M.; Biscarini, M.; Tuccclla, P.; Lombardi, A.; Colaiuda, V.; Tomassetti, B.; Cimini, D.; Pettinelli, E.; Mattei, E.; Lauro, S.; Cosciotti, B.; Picciotti, E.; Di Fabio, S.; Bernardini, L.; Cinque, G.; Cappelletti, D. M.; Petroselli, C.; Pecci, M.; D'aquila, P.; Martinelli, M.; Caira, T.; Di Fiore, T.; Boccabella, P.; Marzano, F. S. - 04b Atto di convegno in volume
conference: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 (Kuala Lumpur, Malaysia)
book: International Geoscience and Remote Sensing Symposium (IGARSS) - (978-1-6654-2792-0)

11573/1669713 - 2022 - The integrated Marine Hazard {webGIS} platform for management of open and coastal ocean in Sicily
Pollino, Maurizio Giacomo Francesco; La Porta, Luigi; Crosara, Alessia; De Rosa, Luigi; Di Iorio, Tatiana; Iaccarino, Antonio; Meloni, Daniela; Pecci, Mattia; Aronica, Salvatore; Fontana, Ignazio; Giacalone, Giovanni; Tranchida, Giorgio; Anello, Fabrizio; Borfecchia, Flavio; Calabrese, Alessanro; Colella, Simone; Colucci, Federica; Marullo, Salvatore; Micheli, Carla; Monteleone, Francesco; Pace, Giandomenico; Piacentino, Salvatore; Sferlazzo, Damiano; Di Sarra, Alcide - 04b Atto di convegno in volume
conference: 2022 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea) (Milazzo, Italy)
book: 2022 {IEEE} International Workshop on Metrology for the Sea$\mathsemicolon$ Learning to Measure Sea Health Parameters ({MetroSea}) - (978-1-6654-9942-2)

11573/1542181 - 2020 - Monitoring the last Apennine glacier: recent in situ campaigns and modelling of Calderone glacial apparatus
Pettinelli, Elena; Pecci, Massimo; Marzano, Frank S.; Biscarini, Marianna; Boccabella, Paolo; Bruschi, Federica; Caira, Tiziano; Cappelletti, David; Cimini, Domenico; D’Aquila, Pinuccio; Di Fiore, Thomas; Esposito, Giulio; Lauro, Sebastian E.; Mattei, Elisabetta; Monaco, Angelo; Palermo, Gianluca; Pecci, Mattia; Raparelli, Edoardo; Scozzafava, Marco; Tuccella, Paolo - 04b Atto di convegno in volume
conference: EGU General Assembly 2020 (Online)
book: EGU General Assembly 2020 - ()

11573/1654312 - 2014 - The ephemeral epiglacial lake of the Ghiacciaio del Calderone (Gran Sasso, Italy)
Cappelletti, D.; Crocchianti, S.; D'aquila, P.; Iurisci, C.; Pecci, M.; Pecci, M. - 01a Articolo in rivista
paper: GEOGRAFIA FISICA E DINAMICA QUATERNARIA (Comitato Glaciologico Italiano:DIP Scienze Terra, V Acc Scienze 5, I 10123 Turin Italy:011 39 011 67007157, EMAIL: gfd@dstunivpi.it, Fax: 011 39 011 6707155) pp. 85-89 - issn: 0391-9838 - wos: WOS:000348838500001 (1) - scopus: 2-s2.0-84929659717 (1)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma