MARIA PAOLA MANZI

Dottoressa di ricerca

ciclo: XXXVI


relatore: prof. Nazzareno Pierdicca

Titolo della tesi: Optical remote sensing of sea water quality through a multi-sensor data-driven approach

This thesis explores advanced methodologies for coastal water quality assessment using remote sensing techniques, with a particular focus on chlorophyll-a (Chl-a) concentrations and the detection of Escherichia coli (E. coli) pollution. With respect to Chl-a detection, this study employs Sentinel-2 multispectral data, in-situ observations, and neural networks to enhance the accuracy of Chl-a estimation in coastal regions. The results reinforced the significance of satellite data for large-scale environmental monitoring, despite challenges in data validation. In addition to that, indeed, a comparison between available in-situ datasets (ISPRA and ARPA) has been realised. In parallel, the research pioneers the development of a novel algorithm to detect E. coli pollution from satellite-derived parameters, an area largely unexplored in existing literature. By analysing bio-optical properties, sea surface temperature, and additional satellite-based indicators such as turbidity and suspended particulate matter, a neural network model was designed to classify coastal waters into categories of pollution, ranging from not polluted to highly polluted. Validation using in-situ data demonstrated promising results, achieving 95% accuracy in detecting highly polluted waters. This research highlights the potential of satellite remote sensing as a non-invasive, cost-effective tool for environmental monitoring, particularly for coastal waters. Future work should focus on expanding the in-situ dataset to further refine the model and strengthen its applicability across diverse geographical areas.

Produzione scientifica

11573/1668322 - 2022 - Snow-Mantle Remote Sensing from Spaceborne Sar Interferometry Using a Model-Based Synergetic Retrieval Approach in Central Apennines
Palermo, G.; Raparelli, E.; Romero, N. A.; Manzi, M. P.; Papa, M.; Biscarini, M.; Tuccclla, P.; Lombardi, A.; Colaiuda, V.; Tomassetti, B.; Cimini, D.; Pettinelli, E.; Mattei, E.; Lauro, S.; Cosciotti, B.; Picciotti, E.; Di Fabio, S.; Bernardini, L.; Cinque, G.; Cappelletti, D. M.; Petroselli, C.; Pecci, M.; D'aquila, P.; Martinelli, M.; Caira, T.; Di Fiore, T.; Boccabella, P.; Marzano, F. S. - 04b Atto di convegno in volume
congresso: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 (Kuala Lumpur, Malaysia)
libro: International Geoscience and Remote Sensing Symposium (IGARSS) - (978-1-6654-2792-0)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma