JARY POMPONI

Dottore di ricerca

ciclo: XXXV


Titolo della tesi: Embedding-based methods for continual learning in neural networks

Humans and other animals have the extraordinary ability to learn from a new experience and at the same time retain knowledge from past experiences. Not only the learned knowledge is preserved, but it is also used in new scenarios and to learn new skills. One of the goals of Artificial Intelligence is to build agents that incorporate the same principles, that are able to continuously learn from the environment and at the same time create a sophisticated understanding of it, to develop more skills and apply them to new problems, while not forgetting past skills and how to solve past tasks. However, despite this shared goal, little research has been done to address this vision, if we exclude some sporadic work. In fact, current state-of-the-art agents suffer from exposure to new data or operating scenarios which slightly differ from the ones they were trained on. In addition to these problems, the datasets constrain the agents to learn from a fixed set of information and tasks, which cannot lead to the emergence of such autonomous agents. Adaptation capabilities are crucial to building agents that can operate in real-world scenarios, but this aspect of artificial intelligence research has been mostly left out of the most studied fields. In this thesis, we study how these ideas are implemented in machine learning agents, especially deep neural network architectures. We give an exhaustive overview of some problems that these agents can encounter and how these are solved in the literature. Moreover, we propose different approaches to enable the continual learning properties in AI agents, all accompanied by exhaustive experimental evaluations.

Produzione scientifica

11573/1717183 - 2024 - Conditional computation in neural networks: Principles and research trends
Scardapane, Simone; Baiocchi, Alessandro; Devoto, Alessio; Marsocci, Valerio; Minervini, Pasquale; Pomponi, Jary - 01a Articolo in rivista
rivista: INTELLIGENZA ARTIFICIALE (Associazione Italiana per l'Intelligenza Artificiale) pp. 175-190 - issn: 1724-8035 - wos: WOS:001301163200013 (0) - scopus: (0)

11573/1669282 - 2023 - Rearranging Pixels is a Powerful Black-Box Attack for RGB and Infrared Deep Learning Models
Pomponi, Jary; Dantoni, Daniele; Alessandro, Nicolosi; Scardapane, Simone - 01a Articolo in rivista
rivista: IEEE ACCESS (Piscataway NJ: Institute of Electrical and Electronics Engineers) pp. 11298-11306 - issn: 2169-3536 - wos: WOS:000934952000001 (0) - scopus: 2-s2.0-85148429464 (0)

11573/1686918 - 2023 - Continual learning with invertible generative models
Pomponi, Jary; Scardapane, Simone; Uncini, Aurelio - 01a Articolo in rivista
rivista: NEURAL NETWORKS (Elsevier Science Limited:Oxford Fulfillment Center, PO Box 800, Kidlington Oxford OX5 1DX United Kingdom:011 44 1865 843000, 011 44 1865 843699, EMAIL: asianfo@elsevier.com, tcb@elsevier.co.UK, INTERNET: http://www.elsevier.com, http://www.elsevier.com/locate/shpsa/, Fax: 011 44 1865 843010) pp. 606-616 - issn: 0893-6080 - wos: WOS:001010764300001 (0) - scopus: 2-s2.0-85160203766 (0)

11573/1612482 - 2022 - A probabilistic re-intepretation of confidence scores in multi-exit models
Pomponi, J.; Scardapane, S.; Uncini, A. - 01a Articolo in rivista
rivista: ENTROPY (Basel : MDPI, 1999-) pp. 1-14 - issn: 1099-4300 - wos: WOS:000746263200001 (3) - scopus: 2-s2.0-85122137502 (4)

11573/1656186 - 2022 - Pixle: a fast and effective black-box attack based on rearranging pixels
Pomponi, Jary; Scardapane, Simone; Uncini, Aurelio - 02a Capitolo o Articolo
libro: 2022 International Joint Conference on Neural Networks (IJCNN) - (978-1-7281-8671-9)

11573/1612489 - 2021 - Avalanche. An end-to-end library for continual learning
Lomonaco, V.; Pellegrini, L.; Cossu, A.; Carta, A.; Graffieti, G.; Hayes, T. L.; De Lange, M.; Masana, M.; Pomponi, J.; Van De Ven, G. M.; Mundt, M.; She, Q.; Cooper, K.; Forest, J.; Belouadah, E.; Calderara, S.; Parisi, G. I.; Cuzzolin, F.; Tolias, A. S.; Scardapane, S.; Antiga, L.; Ahmad, S.; Popescu, A.; Kanan, C.; Van De Weijer, J.; Tuytelaars, T.; Bacciu, D.; Maltoni, D. - 04b Atto di convegno in volume
congresso: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 (Nashville; USA)
libro: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops - (978-1-6654-4899-4)

11573/1612484 - 2021 - Structured ensembles. An approach to reduce the memory footprint of ensemble methods
Pomponi, J.; Scardapane, S.; Uncini, A. - 01a Articolo in rivista
rivista: NEURAL NETWORKS (Elsevier Science Limited:Oxford Fulfillment Center, PO Box 800, Kidlington Oxford OX5 1DX United Kingdom:011 44 1865 843000, 011 44 1865 843699, EMAIL: asianfo@elsevier.com, tcb@elsevier.co.UK, INTERNET: http://www.elsevier.com, http://www.elsevier.com/locate/shpsa/, Fax: 011 44 1865 843010) pp. 407-418 - issn: 0893-6080 - wos: WOS:000704005300022 (4) - scopus: 2-s2.0-85115391923 (4)

11573/1503663 - 2021 - Bayesian neural networks with maximum mean discrepancy regularization
Pomponi, Jary; Scardapane, Simone; Uncini, Aurelio - 01a Articolo in rivista
rivista: NEUROCOMPUTING (Elsevier BV:PO Box 211, 1000 AE Amsterdam Netherlands:011 31 20 4853757, 011 31 20 4853642, 011 31 20 4853641, EMAIL: nlinfo-f@elsevier.nl, INTERNET: http://www.elsevier.nl, Fax: 011 31 20 4853598) pp. - - issn: 0925-2312 - wos: WOS:000663418700002 (8) - scopus: 2-s2.0-85101401843 (13)

11573/1409486 - 2020 - DeepRICH: learning deeply Cherenkov detectors
Fanelli, Cristiano; Pomponi, Jary - 01a Articolo in rivista
rivista: MACHINE LEARNING: SCIENCE AND TECHNOLOGY (Bristol: IOP Publishing) pp. 1-14 - issn: 2632-2153 - wos: WOS:000660845800001 (11) - scopus: 2-s2.0-85103357692 (15)

11573/1409424 - 2020 - Efficient continual learning in neural networks with embedding regularization
Pomponi, J.; Scardapane, S.; Lomonaco, V.; Uncini, A. - 01a Articolo in rivista
rivista: NEUROCOMPUTING (Elsevier BV:PO Box 211, 1000 AE Amsterdam Netherlands:011 31 20 4853757, 011 31 20 4853642, 011 31 20 4853641, EMAIL: nlinfo-f@elsevier.nl, INTERNET: http://www.elsevier.nl, Fax: 011 31 20 4853598) pp. 139-148 - issn: 0925-2312 - wos: WOS:000535918700013 (22) - scopus: 2-s2.0-85080091535 (27)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma