FEDERICO SUCCETTI

PhD Graduate

PhD program:: XXXVII


advisor: prof. Massimo Panella

Thesis title: Advancements in Time Series Analysis Using Deep Learning

This doctoral thesis investigates advanced methodologies in deep learning for time series analysis, addressing challenges inherent to univariate and multivariate time series data across dynamic sectors. In response to the rapid growth of data generated by Internet-of-Things devices and sensors, this research introduces an innovative Adaptive Embedding approach tailored to dynamically adjust embedding dimensions and architecture configurations based on the characteristics of the input data. This technique significantly improves the predictability of complex time series data by optimizing the neural network’s structure for various forecasting horizons and data scenarios. This novel embedding procedure enhances model accuracy in predicting energy generation and demand within smart grids, addressing challenges in photovoltaic energy forecasting, and grid management. The research further explores embedding techniques that transform time series data into image formats, offering substantial improvements over traditional time series analysis methods. By leveraging convolutional and recurrent neural networks, comprehensive validation across several energy-focused applications is provided, including electric grid anomaly detection, energy theft identification, and community-level energy optimization. Results indicate that the proposed methods outperform conventional approaches in predictive performance and computational efficiency, offering scalable solutions for real-time applications. Overall, this thesis lays foundational advancements in time series embedding and provides practical insights for deploying deep learning in energy systems.

Research products

11573/1726935 - 2025 - Multi-label classification with imbalanced classes by fuzzy deep neural networks
Succetti, F.; Rosato, A.; Panella, M. - 01a Articolo in rivista
paper: INTEGRATED COMPUTER-AIDED ENGINEERING (IOS Press:Nieuwe Hemweg 6B, 1013 BG Amsterdam Netherlands:011 31 20 6883355, EMAIL: r.tosendjojo@iospress.nl, INTERNET: http://www.iospress.nl, Fax: 011 31 20 6203419) pp. 23-36 - issn: 1069-2509 - wos: WOS:001360811000002 (0) - scopus: 2-s2.0-85207878683 (0)

11573/1717676 - 2024 - A neural network symbolic approach to structural health monitoring in aerospace applications
Angeletti, F.; Succetti, F.; Panella, M.; Rosato, A. - 04b Atto di convegno in volume
conference: 13th IEEE Congress on Evolutionary Computation (CEC 2024) (Yokohama; Giappone)
book: Proceedings of 2024 IEEE Congress on Evolutionary Computation (IEEE CEC 2024) - (9798350308365)

11573/1730175 - 2024 - A deep learning-based approach for battery life classification
Succetti, F.; Dell'era, A.; Rosato, A.; Fioravanti, A.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
conference: 24th EEEIC International Conference on Environment and Electrical Engineering and 8th I and CPS Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2024 (Rome; Italy)
book: Proceedings - 24th EEEIC International Conference on Environment and Electrical Engineering and 8th I and CPS Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2024 - (979-8-3503-5518-5)

11573/1710445 - 2024 - Reti neurali e neurofuzzy per la classificazione di serie temporali energetiche
Succetti, F.; Rosato, A.; Panella, M. - 04d Abstract in atti di convegno
conference: XXXVIII Riunione Annuale dei Ricercatori di Elettrotecnica (Bari, Italia)
book: Memorie ET2024 - ()

11573/1689441 - 2023 - An adaptive embedding procedure for time series forecasting with deep neural networks
Succetti, F.; Rosato, A.; Panella, M. - 01a Articolo in rivista
paper: NEURAL NETWORKS (Elsevier Science Limited:Oxford Fulfillment Center, PO Box 800, Kidlington Oxford OX5 1DX United Kingdom:011 44 1865 843000, 011 44 1865 843699, EMAIL: asianfo@elsevier.com, tcb@elsevier.co.UK, INTERNET: http://www.elsevier.com, http://www.elsevier.com/locate/shpsa/, Fax: 011 44 1865 843010) pp. 715-729 - issn: 0893-6080 - wos: WOS:001122445000001 (6) - scopus: 2-s2.0-85171621847 (7)

11573/1664072 - 2023 - Challenges and perspectives of smart grid systems in islands: a real case study
Succetti, Federico; Rosato, Antonello; Araneo, Rodolfo; Lorenzo, Gianfranco Di; Panella, Massimo - 01a Articolo in rivista
paper: ENERGIES (Basel : Molecular Diversity Preservation International) pp. - - issn: 1996-1073 - wos: WOS:000915038300001 (9) - scopus: 2-s2.0-85146550846 (13)

11573/1655500 - 2022 - Multivariate time series analysis for electrical power theft detection in the distribution grid
Ceschini, A.; Rosato, A.; Succetti, F.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
conference: 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2022 (Prague; Czech Republic)
book: 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2022 - (978-1-6654-8537-1)

11573/1655501 - 2022 - A price-aware dynamic decision system in energy communities
Di Luzio, F.; Succetti, F.; Rosato, A.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
conference: 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2022 (Prague; Czech Republic)
book: 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2022 - (978-1-6654-8537-1)

11573/1710438 - 2022 - Deep learning per la predizione multivariata di serie energetiche
Succetti, F.; Rosato, A.; Araneo, R.; Panella, M. - 04d Abstract in atti di convegno
conference: XXXVI Riunione Annuale dei Ricercatori di Elettrotecnica (Ancona, Italia)
book: Memorie ET2022 - ()

11573/1657000 - 2022 - A Fast Deep Learning Technique for Wi-Fi-Based Human Activity Recognition
Succetti, F.; Rosato, A.; Di Luzio, F.; Ceschini, A.; Panella, M. - 01a Articolo in rivista
paper: ELECTROMAGNETIC WAVES (EMW Publishing:PO Box 425517:Cambridge, MA 02142:(617)354-9597, INTERNET: http://www.emwave.com, Fax: (617)547-3137) pp. 127-141 - issn: 1070-4698 - wos: WOS:000824736600001 (13) - scopus: 2-s2.0-85134012948 (14)

11573/1675677 - 2022 - Nonexclusive classification of household appliances by fuzzy deep neural networks
Succetti, F.; Rosato, A.; Panella, M. - 02a Capitolo o Articolo
book: Applied Intelligence and Informatics - (978-3-031-24801-6)

11573/1630054 - 2021 - Deep Neural Networks for Electric Energy Theft and Anomaly Detection in the Distribution Grid
Ceschini, A.; Rosato, A.; Succetti, F.; Di Luzio, F.; Mitolo, M.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
conference: 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 (Bari; Italy)
book: 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings - (978-1-6654-3613-7)

11573/1580314 - 2021 - A blockwise embedding for multi-day-ahead prediction of energy time series by randomized deep neural networks
Di Luzio, F.; Rosato, A.; Succetti, F.; Panella, M. - 04b Atto di convegno in volume
conference: 2021 International Joint Conference on Neural Networks, IJCNN 2021 (Shenzhen; China - Virtual)
book: Proceedings of the International Joint Conference on Neural Networks - (978-0-7381-3366-9)

11573/1541789 - 2021 - 2-D convolutional deep neural network for the multivariate prediction of photovoltaic time series
Rosato, Antonello; Araneo, Rodolfo; Andreotti, Amedeo; Succetti, Federico; Panella, Massimo - 01a Articolo in rivista
paper: ENERGIES (Basel : Molecular Diversity Preservation International) pp. 1-18 - issn: 1996-1073 - wos: WOS:000650198900001 (12) - scopus: 2-s2.0-85106414295 (17)

11573/1630052 - 2021 - Multivariate Prediction of Energy Time Series by Autoencoded LSTM Networks
Succetti, F.; Di Luzio, F.; Ceschini, A.; Rosato, A.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
conference: 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 (Bari; Italy)
book: 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings - (978-1-6654-3613-7)

11573/1566169 - 2021 - Time series prediction with autoencoding LSTM networks
Succetti, Federico; Ceschini, Andrea; Di Luzio, Francesco; Rosato, Antonello; Panella, Massimo - 04b Atto di convegno in volume
conference: 6th International Work-Conference on Artificial Neural Networks, IWANN 2021 (Virtual, Online)
book: Lecture Notes in Computer Science - (978-3-030-85098-2; 978-3-030-85099-9)

11573/1441345 - 2020 - A combined deep learning approach for time series prediction in energy environments
Rosato, A.; Succetti, F.; Araneo, R.; Andreotti, A.; Mitolo, M.; Panella, M. - 04b Atto di convegno in volume
conference: 56th IEEE/IAS Industrial and Commercial Power Systems Technical Conference, I and CPS 2020 (Las Vegas (virtual), U.S.A.)
book: Conference Record - Industrial and Commercial Power Systems Technical Conference - (978-1-7281-7195-1)

11573/1461039 - 2020 - ADMM consensus for deep LSTM networks
Rosato, A.; Succetti, F.; Barbirotta, M.; Panella, M. - 04b Atto di convegno in volume
conference: 2020 International Joint Conference on Neural Networks, IJCNN 2020 (Glasgow (virtual), U.K.)
book: Proceedings of the International Joint Conference on Neural Networks - (978-1-7281-6926-2)

11573/1441339 - 2020 - Multidimensional feeding of LSTM networks for multivariate prediction of energy time series
Succetti, F.; Rosato, A.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
conference: 2020 IEEE International conference on environment and electrical engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC, I and CPS Europe 2020 (Madrid (virtual); Spain)
book: 2020 IEEE International conference on environment and electrical engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC, I and CPS Europe 2020 - (978-1-7281-7455-6)

11573/1464797 - 2020 - Deep Neural Networks for Multivariate Prediction of Photovoltaic Power Time Series
Succetti, Federico; Rosato, Antonello; Araneo, Rodolfo; Panella, Massimo - 01a Articolo in rivista
paper: IEEE ACCESS (Piscataway NJ: Institute of Electrical and Electronics Engineers) pp. 211490-211505 - issn: 2169-3536 - wos: WOS:000596357600001 (35) - scopus: 2-s2.0-85096859773 (46)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma