FEDERICA NATALIZI

PhD Graduate

PhD program:: XXXVII


supervisor: Gaspare Galati
co-supervisor: Fabrizio Piras

Thesis title: Machine Learning Algorithm in Predicting Alzheimer’s Disease: Exploring Brain Volumetric Markers and Cognitive Profiles in Amnestic Mild Cognitive Impairment Patients

The increasing number of people diagnosed with Alzheimer’s disease (AD) represents one of the most pressing challenges facing contemporary healthcare, prompting a surge of research aimed at understanding its progression and finding effective interventions. Since pharmacological therapies for cognitive and behavioral treatments of AD symptoms have shown poor efficacy, preventive actions, by targeting risk factors and promoting healthy lifestyles, actually represent the first option to manage such symptoms. Mild Cognitive Impairment (MCI), as an intermediate stage between normal cognition and dementia, serves as a critical juncture in the spectrum of cognitive decline and is conceived as a potential target for interventions aimed at delaying dementia progression and mitigating associated disabilities. The feasibility of intervening from the earliest stages is even more important in light of the growing evidence showing that not all patients with MCI progress to AD and, for this reason, MCI presents a unique opportunity to investigate factors that may influence the AD conversion. Consequently, a significant body of research has focused on neuroimaging and neuropsychological features that distinguish MCI patients who progress to AD from those remaining clinically stable in defined time windows, thus contributing to the theoretical frameworks that strengthen our understanding of the disease. Among several approaches used in the neurodegenerative field, machine learning (ML) algorithms have recently emerged as powerful and promising tools, offering unprecedented opportunities in the analysis of complex datasets and providing clinicians with vital information that can guide treatment decisions and patient management strategies. In the context of Alzheimer’s research, several studies demonstrated the utility and the accuracy of ML methods in identifying predictors of AD conversion, thereby offering prognostic measures contributing to determine patterns within neuroimaging and cognitive assessment data that may be indicative of conversion risk. This thesis explores the transition from MCI to AD through the lens of machine learning, and specifically it aims at identifying the brain-volumetric predictors of AD conversion and at exploring neuropsychological profiles of amnestic MCI patients converting to possible AD and of those remaining stable within a one-year period. Through a comprehensive examination of cerebral regions recognized to be involved in AD, we discern biomarkers indicative of an elevated likelihood of disease progression, facilitated by the novel application of feature selection methodology that enhance our models by differentiating the most pertinent anatomical alterations associated with disease conversion. Analysis of neuropsychological differences and the impact of static cognitive reserve on performances also provides a behavioral context, thereby revealing the complex interactions between brain volumes, cognitive reserve and cognition. By integrating the innovative aspect of AI tools and the potential beneficial effects of cognitive reserve, this dissertation thus aims to contribute to the growing body of knowledge pertaining to AD, providing healthcare practitioners with the requisite instruments for prompt diagnosis and intervention. This endeavor is particularly critical within a context wherein timely interventions and accurate diagnoses have the potential to modify disease trajectories and enhance patient outcomes.

Research products

11573/1676196 - 2023 - Efectos del teletrabajo y la digitalización en la lectura compartida entre padres e hijos
Gómez-Merino, Nadina; Rubio, Alba; Ávila, Vicenta; Gil, Laura; Natalizi, Federica - 01a Articolo in rivista
paper: BORDÓN (Madrid : SEP) pp. 65-81 - issn: 2340-6577 - wos: WOS:001036103900001 (0) - scopus: 2-s2.0-85152664243 (1)

11573/1691540 - 2023 - Being a deaf student in a face mask world: Survey data from Italian university students
Natalizi, F; Gómez-Merino, N; Arfé, B; Ferrer, A; Gheller, F; Fajardo, I - 01a Articolo in rivista
paper: RESEARCH IN DEVELOPMENTAL DISABILITIES (New York: Elsevier) pp. 104618- - issn: 1873-3379 - wos: WOS:001115112100001 (3) - scopus: 2-s2.0-85175491849 (3)

11573/1679074 - 2023 - Brain Network Topology in Deficit and Non-Deficit Schizophrenia: Application of Graph Theory to Local and Global Indices
Vecchio, Daniela; Piras, Fabrizio; Ciullo, Valentina; Piras, Federica; Natalizi, Federica; Ducci, Giuseppe; Ambrogi, Sonia; Spalletta, Gianfranco; Banaj, Nerisa - 01a Articolo in rivista
paper: JOURNAL OF PERSONALIZED MEDICINE (Basel: MDPI AG, 2011-) pp. - - issn: 2075-4426 - wos: WOS:001009256400001 (1) - scopus: 2-s2.0-85160299247 (2)

11573/1655839 - 2022 - Preoperative Navigated Transcranial Magnetic Stimulation: New Insight for Brain Tumor-Related Language Mapping
Natalizi, Federica; Piras, Federica; Vecchio, Daniela; Spalletta, Gianfranco; Fabrizio Piras, And - 01a Articolo in rivista
paper: JOURNAL OF PERSONALIZED MEDICINE (Basel: MDPI AG, 2011-) pp. 1589- - issn: 2075-4426 - wos: WOS:000872806700001 (5) - scopus: 2-s2.0-85140735096 (5)

11573/1646328 - 2022 - Interventi non farmacologici nei pazienti affetti da demenza. Il training cognitivo e la stimolazione multimodale
Piras, Fabrizio; Natalizi, Federica - 01a Articolo in rivista
paper: LA NEUROLOGIA ITALIANA (Milano: MeP edizioni MEdico e paziente edizioni) pp. 22-27 - issn: - wos: (0) - scopus: (0)

11573/1645956 - 2021 - Beyond the Educational Context: Relevance of Intrinsic Reading Motivation During COVID-19 Confinement in Spain
De Sixte, R.; Fajardo, I.; Mana, A.; Janez, A.; Ramos, M.; Garcia-Serrano, M.; Natalizi, F.; Arfe, B.; Rosales, J. - 01a Articolo in rivista
paper: FRONTIERS IN PSYCHOLOGY (Lausanne: Frontiers Editorial) pp. 703251-703251 - issn: 1664-1078 - wos: WOS:000678644700001 (3) - scopus: 2-s2.0-85111370041 (5)

11573/1645966 - 2021 - La lectura compartida durante el confinamento por COVID-19
Gómez-Merino, Nadina; Rubio, Alba; Ávila, Vicenta; Gil, Laura; Natalizi, Federica - 04f Poster
conference: XXXII congreso international de aelfa-if (Barcelona; Spain)
book: XXXII congreso international de aelfa-if - ()

11573/1645975 - 2021 - Oltre il contesto educativo: motivazione intrinseca e abitudini di lettura durante la pandemia da COVID19
Natalizi, Federica - 01a Articolo in rivista
paper: STATE OF MIND (Milano : Studi Cognitivi) pp. - - issn: 2280-3653 - wos: (0) - scopus: (0)

11573/1645985 - 2021 - Lettura e COVID: come sono cambiate le nostre abitudini?
Natalizi, Federica - 01a Articolo in rivista
paper: STATE OF MIND (Milano : Studi Cognitivi) pp. - - issn: 2280-3653 - wos: (0) - scopus: (0)

11573/1645952 - 2020 - READ-COGvid. A database from reading and media habits during COVID-19 confinement in Spain and Italy
Salmeron, L.; Arfe, B.; Avila, V.; Cerdan, R.; De Sixte, R.; Delgado, P.; Fajardo, I.; Ferrer, A.; Garcia, M.; Gil, L.; Gomez-Merino, N.; Janez, A.; Lluch, G.; Mana, A.; Mason, L.; Natalizi, F.; Pi-Ruano, M.; Ramos, L.; Ramos, M.; Roca, J.; Rosa, E.; Rosales, J.; Rubio, A.; Serrano-Mendizabal, M.; Skrobiszewska, N.; Vargas, C.; Vergara-Martinez, M.; Perea, M. - 01a Articolo in rivista
paper: FRONTIERS IN PSYCHOLOGY (Lausanne: Frontiers Editorial) pp. 1-6 - issn: 1664-1078 - wos: WOS:000583250600001 (11) - scopus: 2-s2.0-85095605818 (11)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma