ANDREA CESCHINI

Dottore di ricerca

ciclo: XXXVII


relatore: prof. Massimo Panella

Titolo della tesi: Achieving Quantum Utility and Quantum Advantage through AI-based Approaches and Efficient Data Driven Models

With the advent of Deep Learning, Artificial Intelligence models have achieved state-of-the-art results across various applications, including natural language processing and image recognition. However, the vast number of parameters in these models makes them challenging to train. This difficulty is further exacerbated by the immense volume of data required for training and the significant computational resources needed to execute such algorithms. Developing foundational Deep Learning models, for example, can take months of training time and cost millions of dollars, restricting their development to large, specialized organizations and limiting their applicability to real-world problems. The aim of this thesis is to investigate Quantum Computation and Information Processing within the Data-Driven paradigm. The primary objective is to develop more efficient and effective quantum learning algorithms that can address and overcome the limitations of classical techniques. Central to this endeavor are Variational Quantum Algorithms and Quantum Neural Networks, which are anticipated to generalize faster and converge with fewer training samples or iterations compared to their classical counterparts. These quantum approaches offer significant advantages in managing high-dimensional datasets, where classical Deep Learning models often become computationally prohibitive. Furthermore, they provide quantum utility by being immediately applicable to current quantum devices while laying the groundwork for achieving quantum advantage as quantum technology continues to advance. The contributions of this thesis also include the development of novel methodologies for optimizing quantum algorithms such as the Quantum Approximate Optimization Algorithm, which embodies quantum utility and is a promising candidate for achieving quantum advantage. Finally, this work establishes frameworks for the efficient training of Quantum Neural Networks and creates hybrid models that bridge quantum and classical computing paradigms, thereby enhancing quantum utility. These advancements have profound implications for the quantum computing community, which has only recently begun to synergize the potential of quantum technologies with classical algorithms in a hybrid fashion. Moreover, this thesis ensures that its findings are accessible to a broader Quantum Machine Learning audience while complementing related results from the classical Machine Learning field. By achieving quantum utility and striving for quantum advantage, this research paves the way for more resource-efficient and effective quantum-based algorithms, significantly advancing the field of Artificial Intelligence.

Produzione scientifica

11573/1733603 - 2025 - On hybrid quanvolutional neural networks optimization
Ceschini, Andrea; Carbone, Andrea; Sebastianelli, Alessandro; Panella, Massimo; Le Saux, Bertrand - 01a Articolo in rivista
rivista: QUANTUM MACHINE INTELLIGENCE (Cham: Springer International Publishing) pp. - - issn: 2524-4906 - wos: WOS:001417578500001 (0) - scopus: (0)

11573/1733000 - 2025 - New advancements on Quantum Latent Diffusion Models
De Falco, Francesca; Ceschini, Andrea; Sebastianelli, Alessandro; Le Saux, Bertrand; Panella, Massimo - 04d Abstract in atti di convegno
congresso: International Conference on Quantum Technology for High-Energy Physics (QT4HEP 2025) (CERN, Ginevra, Svizzera)
libro: Proceedings of International Conference on Quantum Technology for High-Energy Physics (QT4HEP 2025) - ()

11573/1733991 - 2024 - Q-SCALE: Quantum Computing-Based Sensor Calibration for Advanced Learning and Efficiency
Bergadano, L.; Ceschini, A.; Chiavassa, P.; Giusto, E.; Montrucchio, B.; Panella, M.; Rosato, A. - 04b Atto di convegno in volume
congresso: 5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024 (Palais des Congres Montreal, can)
libro: Proceedings IEEE Quantum Week 2024, IEEE International Conference on Quantum Computing and Engineering (QCE 2024) - ()

11573/1714257 - 2024 - A review on quantum approximate optimization algorithm and its variants
Blekos, Kostas; Brand, Dean; Ceschini, Andrea; Chou, Chiao-Hui; Li, Rui-Hao; Pandya, Komal; Summer, Alessandro - 01g Articolo di rassegna (Review)
rivista: PHYSICS REPORTS (Elsevier BV:PO Box 211, 1000 AE Amsterdam Netherlands:011 31 20 4853757, 011 31 20 4853642, 011 31 20 4853641, EMAIL: nlinfo-f@elsevier.nl, INTERNET: http://www.elsevier.nl, Fax: 011 31 20 4853598) pp. 1-66 - issn: 0370-1573 - wos: WOS:001221953700001 (26) - scopus: 2-s2.0-85188010855 (44)

11573/1710440 - 2024 - Convergenza e generalizzazione nelle reti neurali quantistiche
Ceschini, A.; Lavagna, L.; De Falco, F.; Rosato, A.; Panella, M. - 04d Abstract in atti di convegno
congresso: XXXVIII Riunione Annuale dei Ricercatori di Elettrotecnica (Bari, Italia)
libro: Memorie ET2024 - ()

11573/1717751 - 2024 - Advancing Quantum Machine Learning: Efficient Hybrid Quantum Computation
Ceschini, A.; Panella, M. - 04d Abstract in atti di convegno
congresso: QUANTUM COMPUTING ANNUAL MEETING ICSC - SPOKE 10, Research and Innovation (Politecnico di Milano, Milano, Italia)
libro: Meeting Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing (ICSC) - ()

11573/1717675 - 2024 - A variational approach to quantum gated recurrent units
Ceschini, A.; Rosato, A.; Panella, M. - 01a Articolo in rivista
rivista: JOURNAL OF PHYSICS COMMUNICATIONS (Bristol : IOP Publishing) pp. - - issn: 2399-6528 - wos: WOS:001295963000001 (0) - scopus: 2-s2.0-85202077030 (1)

11573/1710441 - 2024 - Modelli generativi quantistici
De Falco, F.; Ceschini, A.; Rosato, A.; Panella, M. - 04d Abstract in atti di convegno
congresso: XXXVIII Riunione Annuale dei Ricercatori di Elettrotecnica (Bari, Italia)
libro: Memorie ET2024 - ()

11573/1717296 - 2024 - Quantum hybrid diffusion models for image synthesis
De Falco, F.; Ceschini, A.; Sebastianelli, A.; Le Saux, B.; Panella, M. - 01a Articolo in rivista
rivista: KI - KÜNSTLICHE INTELLIGENZ (Heidelberg; Berlin: Springer Gesellschaft für Informatik / Fachbereich Künstliche Intelligenz) pp. - - issn: 0933-1875 - wos: WOS:001287484700001 (1) - scopus: 2-s2.0-85200997545 (1)

11573/1729072 - 2024 - Evolving hybrid quantum-classical GRU architectures for multivariate time series
De Falco, F.; Lavagna, L.; Ceschini, A.; Rosato, A.; Panella, M. - 04b Atto di convegno in volume
congresso: 34th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2024 (London; United Kingdom)
libro: IEEE International Workshop on Machine Learning for Signal Processing, MLSP - (979-8-3503-7225-0)

11573/1717680 - 2024 - Enhancing QAOA Ansatz via Multi-Parameterized Layer and Blockwise Optimization
De Falco, F.; Piperno, S.; Lavagna, L.; Ceschini, A.; Rosato, A.; Panella, M. - 04d Abstract in atti di convegno
congresso: Quantum Techniques in Machine Learning (QTML 2024) (University of Melbourne, Melbourne, Australia)
libro: Proceedings of Quantum Techniques in Machine Learning (QTML 2024) - ()

11573/1728100 - 2024 - Quantum latent diffusion models
De Falco, Francesca; Ceschini, Andrea; Sebastianelli, Alessandro; Le Saux, Bertrand; Panella, Massimo - 01a Articolo in rivista
rivista: QUANTUM MACHINE INTELLIGENCE (Cham: Springer International Publishing) pp. 1-20 - issn: 2524-4906 - wos: WOS:001365261800001 (0) - scopus: 2-s2.0-85210412201 (0)

11573/1721557 - 2024 - A layerwise-multi-angle approach to fine-tuning the quantum approximate optimization algorithm
Lavagna, L.; Ceschini, A.; Rosato, A.; Panella, M. - 04b Atto di convegno in volume
congresso: 2024 International Joint Conference on Neural Networks, IJCNN 2024 (Yokohama; Giappone)
libro: Proceedings of the International Joint Conference on Neural Networks - (9798350359312)

11573/1717679 - 2024 - Quantum Generative Modeling via Straightforward State Preparation
Lavagna, L.; De Falco, F.; Piperno, S.; Ceschini, A.; Rosato, A.; Panella, M. - 04d Abstract in atti di convegno
congresso: Quantum Techniques in Machine Learning (QTML 2024) (University of Melbourne, Melbourne, Australia)
libro: Proceedings of Quantum Techniques in Machine Learning (QTML 2024) - ()

11573/1710443 - 2024 - Il quantum computing per la tomografia elettromagnetica
Mottola, V.; Ceschini, A.; Panella, M.; Tamburrino, A. - 04d Abstract in atti di convegno
congresso: XXXVIII Riunione Annuale dei Ricercatori di Elettrotecnica (Bari, Italia)
libro: Memorie ET2024 - ()

11573/1717681 - 2024 - Quantum Enhanced Knowledge Distillation
Piperno, S.; Lavagna, L.; De Falco, F.; Ceschini, A.; Rosato, A.; Windridge, D.; Panella, M. - 04d Abstract in atti di convegno
congresso: Quantum Techniques in Machine Learning (QTML 2024) (University of Melbourne, Melbourne, Australia)
libro: Proceedings of Quantum Techniques in Machine Learning (QTML 2024) - ()

11573/1720431 - 2024 - Machine learning forecast of surface solar irradiance from meteo satellite data
Sebastianelli, Alessandro; Serva, Federico; Ceschini, Andrea; Paletta, Quentin; Panella, Massimo; Le Saux, Bertrand - 01a Articolo in rivista
rivista: REMOTE SENSING OF ENVIRONMENT (Elsevier Science Incorporated / NY Journals:Madison Square Station, PO Box 882:New York, NY 10159:(212)633-3730, EMAIL: usinfo-f@elsevier.com, INTERNET: http://www.elsevier.com, Fax: (212)633-3680) pp. - - issn: 0034-4257 - wos: WOS:001324822500001 (0) - scopus: 2-s2.0-85204804468 (0)

11573/1675690 - 2023 - Analysis of Logic Schemes for the Optical Implementation of Pointwise Operations in Gated Recurrent Unit Cells
Alam, Badrul; Ceschini, Andrea; Rosato, Antonello; Panella, Massimo; Asquini, Rita - 02a Capitolo o Articolo
libro: Sensors and Microsystems - (978-3-031-25705-6; 978-3-031-25706-3)

11573/1686456 - 2023 - Modular quantum circuits for secure communication
Ceschini, A.; Rosato, A.; Panella, M. - 01a Articolo in rivista
rivista: IET QUANTUM COMMUNICATION (Receiving publisher (01/01/2021) : Wiley Stevenage: Institution of Engineering and Technology, 2020-) pp. 208-217 - issn: 2632-8925 - wos: WOS:001117992800006 (1) - scopus: 2-s2.0-85168259862 (2)

11573/1710429 - 2023 - Towards Quantum Diffusion Models
De Falco, F.; Ceschini, A.; Sebastianelli, A.; Panella, M.; Le Saux, B. - 04d Abstract in atti di convegno
congresso: Quantum Techniques in Machine Learning (QTML 2023) (CERN, Ginevra, Svizzera)
libro: Proceedings of Quantum Techniques in Machine Learning (QTML 2023) - ()

11573/1690651 - 2023 - Resource saving via ensemble techniques for quantum neural networks
Incudini, M.; Grossi, M.; Ceschini, A.; Mandarino, A.; Panella, M.; Vallecorsa, S.; Windridge, D. - 01a Articolo in rivista
rivista: QUANTUM MACHINE INTELLIGENCE (Cham: Springer International Publishing) pp. 1-24 - issn: 2524-4906 - wos: WOS:001079309800002 (1) - scopus: 2-s2.0-85173578065 (4)

11573/1710430 - 2023 - Towards Strategies to Avoid Barren Plateaus
Mair, S.; Sebastianelli, A.; Ceschini, A.; Vidal, S.; Panella, M.; Le Saux, B. - 04d Abstract in atti di convegno
congresso: Quantum Techniques in Machine Learning (QTML 2023) (CERN, Ginevra, Svizzera)
libro: Proceedings of Quantum Techniques in Machine Learning (QTML 2023) - ()

11573/1710427 - 2023 - A General Approach for Dropout in Quantum Neural Networks
Scala, F.; Ceschini, A.; Gerace, D.; Panella, M. - 04d Abstract in atti di convegno
congresso: Quantum Techniques in Machine Learning (QTML 2023) (CERN, Ginevra, Svizzera)
libro: Proceedings of Quantum Techniques in Machine Learning (QTML 2023) - ()

11573/1696640 - 2023 - A general approach to dropout in quantum neural networks
Scala, Francesco; Ceschini, Andrea; Panella, Massimo; Gerace, Dario - 01a Articolo in rivista
rivista: ADVANCED QUANTUM TECHNOLOGIES (Weinheim: Wiley-VCH Verlag) pp. 1-18 - issn: 2511-9044 - wos: WOS:001118464600001 (5) - scopus: 2-s2.0-85179328285 (7)

11573/1664101 - 2022 - All-optical logic gates based on semiconductor optical amplifiers for implementing deep recurrent neural networks
Alam, B.; Ceschini, A.; Rosato, A.; Panella, M.; Asquini, R. - 04d Abstract in atti di convegno
congresso: 53.ma Riunione Annuale dell’Associazione Società Italiana di Elettronica (SIE) (Pizzo (VV), Italia)
libro: Atti della 53.ma Riunione Annuale dell’Associazione Società Italiana di Elettronica (SIE) - ()

11573/1655649 - 2022 - All-optical and logic gate based on semiconductor optical amplifiers for implementing deep recurrent neural networks
Alam, Badrul; Ceschini, Andrea; Rosato, Antonello; Panella, Massimo; Asquini, Rita - 04b Atto di convegno in volume
congresso: International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (Torino (ITA))
libro: 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) - (978-1-6654-7898-4; 978-1-6654-7899-1)

11573/1658031 - 2022 - Hybrid Quantum-Classical Recurrent Neural Networks for Time Series Prediction
Ceschini, A.; Rosato, A.; Panella, M. - 04b Atto di convegno in volume
congresso: 2022 International Joint Conference on Neural Networks, IJCNN 2022 (Padova, Italy)
libro: Proceedings of the International Joint Conference on Neural Networks - (978-1-7281-8671-9)

11573/1710435 - 2022 - Reti neurali quantistiche per dispositivi Noisy Intermediate-Scale Quantum (NISQ)
Ceschini, A.; Rosato, A.; Panella, M. - 04d Abstract in atti di convegno
congresso: XXXV Riunione Annuale dei Ricercatori di Elettrotecnica (Ancona, Italia)
libro: Memorie ET2022 - ()

11573/1655500 - 2022 - Multivariate time series analysis for electrical power theft detection in the distribution grid
Ceschini, A.; Rosato, A.; Succetti, F.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
congresso: 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2022 (Prague; Czech Republic)
libro: 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2022 - (978-1-6654-8537-1)

11573/1584748 - 2022 - Design of an LSTM cell on a quantum hardware
Ceschini, Andrea; Rosato, Antonello; Panella, Massimo - 01a Articolo in rivista
rivista: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS (Piscataway, NJ : Institute of Electrical and Electronics Engineers, c2004-) pp. 1822-1826 - issn: 1549-7747 - wos: WOS:000770045800235 (5) - scopus: 2-s2.0-85127912184 (12)

11573/1664099 - 2022 - Ensembling Techniques for Quantum Neural Networks
Incudini, M.; Grossi, M.; Ceschini, A.; Mandarino, A.; Panella, M.; Vallecorsa, S.; Windridge, D.; Di Pierro, A. - 04d Abstract in atti di convegno
congresso: Quantum Techniques in Machine Learning (QTML 2022) (Napoli, Italia)
libro: Proceedings of Quantum Techniques in Machine Learning (QTML 2022) - ()

11573/1657000 - 2022 - A Fast Deep Learning Technique for Wi-Fi-Based Human Activity Recognition
Succetti, F.; Rosato, A.; Di Luzio, F.; Ceschini, A.; Panella, M. - 01a Articolo in rivista
rivista: ELECTROMAGNETIC WAVES (EMW Publishing:PO Box 425517:Cambridge, MA 02142:(617)354-9597, INTERNET: http://www.emwave.com, Fax: (617)547-3137) pp. 127-141 - issn: 1070-4698 - wos: WOS:000824736600001 (13) - scopus: 2-s2.0-85134012948 (13)

11573/1630054 - 2021 - Deep Neural Networks for Electric Energy Theft and Anomaly Detection in the Distribution Grid
Ceschini, A.; Rosato, A.; Succetti, F.; Di Luzio, F.; Mitolo, M.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
congresso: 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 (Bari; Italy)
libro: 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings - (978-1-6654-3613-7)

11573/1630052 - 2021 - Multivariate Prediction of Energy Time Series by Autoencoded LSTM Networks
Succetti, F.; Di Luzio, F.; Ceschini, A.; Rosato, A.; Araneo, R.; Panella, M. - 04b Atto di convegno in volume
congresso: 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 (Bari; Italy)
libro: 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings - (978-1-6654-3613-7)

11573/1566169 - 2021 - Time series prediction with autoencoding LSTM networks
Succetti, Federico; Ceschini, Andrea; Di Luzio, Francesco; Rosato, Antonello; Panella, Massimo - 04b Atto di convegno in volume
congresso: 6th International Work-Conference on Artificial Neural Networks, IWANN 2021 (Virtual, Online)
libro: Lecture Notes in Computer Science - (978-3-030-85098-2; 978-3-030-85099-9)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma