ALESSANDRO SEMERARO

PhD Student

PhD program:: XXXVIII
email: alessandro.semeraro@uniroma1.it
phone: 3317856690
building: Chimica e Tecnologia Farmaceutiche CU019
room: Dottorando presso SCITEC - "Giulio Natta" - CNR - Istituti Biologici - Università La Cattolica




supervisor: Dottoressa Maria Cristina De Rosa
advisor: Professore Giancarlo Fabrizi

Research: CN2, Centro Nazionale di Ricerca Tecnologie dell’agricoltura (Agritech), Spoke 9 - Measurements, Traceability and Quality in Agri-food Chains (METRIQA)/METRIQA digital Information Platform/Metadata automatic enrichment on single resources

Alessandro Semeraro was born in Rome in 1997 and graduated from the University of Pisa in Chemistry and Pharmaceutical Technology with a score of 109/110. During his studies, he participated in numerous events, including a Summer School in Computational Aided Drug Design, which led him to complete his master’s thesis in computational chemistry on the pharmacophoric points of the extracellular portion of the GPR55 protein. Currently, Alessandro is a 38th cycle PhD student at the University of Rome La Sapienza and is based and collaborates with the CNR SCITEC “Giulio Natta” at the University La Cattolica of Rome. His research project involves the use of software for docking and molecular simulations CURRICULUM VITAE Education: ❖Collaborator SCITEC “Giulio Natta” CNR – Istituti Biologici – University of Rome La Cattolica November 2022/Present ❖ PhD Student - University of Rome La Sapienza, Italy November 2022/Present ❖ Qualification to the Profession of Pharmacist, State Examination, University of Pisa, Italy July 2022 ❖ MD Single Cycle, Pharmaceutical Chemistry and Technologies, University of Pisa, Italy September 2016/January 2022 ▪ 109/110 ▪ Subjects: Organic and General Chemistry, Pharmaceutical and Toxicological Chemistry, Pharmacology and Toxicology, Quantitative and Qualitative Drugs Analysis, Biochemistry ▪ Thesis Title: ”Analisi computazionale del sito recettoriale della proteina GPR55” ❖ High Scientific School, Ulisse Dini, Pisa, Italy September 2011/July 2016 ▪ 84/100 ▪ Subjects: Math, Physics, Science, German ▪ Activities: English language course, preparations of the laboratories for scientific week Experience: ❖ Thesis worker “Analisi computazionale del sito recettoriale della proteina GPR55” June 2022/January 2022 Experimental Thesis - Description: Thesis in the field of computational chemistry. Using the Linux operating system e programs for molecular docking and molecular dynamics simulations for the research of pharmacophoric points of the GPR55 protein through a “fragment-based” approach. ❖ Trainee in Hospital Pharmacy of A.O.U.P., Pisa March 2021/June 2021 ❖ Trainee in Pharmacy “Farmacia Raimo SNC”, Pisa October 2020/January 2021 Certifications: ❖Corso di Formazione Teorico – Pratico di Statistica, Università di Roma La Sapienza Aprile 2023 ❖Introduction to AI & ML Techniques in Drug Discovery, Udemy Marzo 2023 ❖Fundamentals of Enzyme Kinetics, Università di Roma La Sapienza Febbraio 2023 ❖La Scrittura Tecnico-Scientifica, Università di Roma La Sapienza Febbraio 2023 Introduction to ML/DL and to Pytorch, Università di Roma La Sapienza Novembre 2022 Open Access delle pubblicazioni e dei dati della ricerca - Settori Bibliometrici, Università di Roma La Sapienza Novembre 2022 ❖ Summer School, Computer-Aided Drug Design, University of Pisa 20th/25th July 2020 ▪ Description: Theoretical and practical lessons of all the main computational techniques used in drug discovery, supplying a basic level of knowledge of this research field ❖ Training Course, PF 24 CFU, University of Pisa January 2020/July 2020 ▪ Description: Discipline anthropo-psycho-pedagogical and didactic methodologies and technologies for teaching Skills: ❖ Software Skills ▪ Programs: UCSF Chimera, Maestro Schrödinger, Amber 20, AutoDock, AutoGrid, AutoDockTools, ChemDraw, JSME, Avogadro ▪ Programming languages: Python (beginner) ▪ IDEs: VS Code ❖ Operating Systems ▪ Microsoft ▪ Linux (shell) ❖ Generals ▪ Team Working ▪ Problem Solving ▪ Kind and respectful personality ▪ Responsible at work ❖ IT Skills ▪ MS Office 365 (Word, Excel, PowerPoint) ▪ Zoom, Teams ▪ Overleaf, Editor Latex ❖ Driving License ▪ BS Languages: ❖ Italian: Native Language ❖ Spanish: Native Language ❖ English: B2 level ❖ German: Basic Level

Research products

11573/1686542 - 2023 - Prediction of CD44 Structure by Deep Learning-Based Protein Modeling
Camponeschi, Chiara; Righino, Benedetta; Pirolli, Davide; Semeraro, Alessandro; Ria, Francesco; Cristina De Rosa, Maria - 01a Articolo in rivista
paper: BIOMOLECULES (Basel: MDPI) pp. - - issn: 2218-273X - wos: WOS:001038166500001 (3) - scopus: 2-s2.0-85166006251 (3)



Le attività presentate in questa pagina sono finanziate totalmente, o in parte, dai fondi del Piano nazionale di ripresa e resilienza.
L'elenco e le finalità delle attività intraprese dalla Sapienza sono descritte nella pagina dedicata Sapienza per il Pnrr.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma