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Abstract 
 

The intrinsic complexity of the built environment is increasing, due to the intricate 

interplay of various factors related to environmental, social and economic 

objectives. Such complexity poses significant challenges in reaching the 

demanding performances required to buildings today but, at the same time, offers 

opportunities to innovate the building design process. This doctoral thesis 

explores the integration of building performance optimization (BPO) 

methodologies within different design stages, coupling parametric modeling, 

dynamic simulations and optimization algorithms. The study elaborates on how 

multi-objective BPO can address complexity in the design process of sustainable 

and low-energy buildings from the schematic design phase of a new construction 

up to the retrofit of an existing building. In so doing, it focuses on multi-family 

residential buildings, as they are a priority in energy efficiency measures at the 

national and international levels and play a key role in addressing current issues, 

such as climate change and fuel poverty. 

The research takes its moves from the concept of the built environment as a 

complex system, emphasizing the necessity of advanced digital tools to deal with 

such complexity. Indeed, design decision-making phases are characterized by 

numerous possible combinations of passive strategies which can improve building 

performance without using extra energy. Such design solutions influence the often 

conflicting objectives that a sustainable building aims to achieve, towards high 

conditions of comfort and functionality, without the consequence of excessive 

energy consumption and emissions.  

First, a systematic literature review, carried out in parallel with an online survey 

distributed to architectural firms, highlights, on the one hand, the great interest in 

BPO in current research and, on the other, the limited diffusion of both simulation 

and optimization tools in architectural practice. 

Once misalignments between research and professional practice have been 

analyzed, the thesis then proposes specific methodologies, rooted in the results of 
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the review, for the use of multi-objective optimization both for new constructions 

and for existing buildings, demonstrating them by applications on relevant case 

studies. The optimization carried out during the schematic phase of the project 

(thus for the case of a new construction) takes into consideration the geometric 

variables of the building to minimize energy consumption and maximize daylight 

accessibility. The proposed methodology integrates multi-disciplinary simulations 

and optimization, in a parametric modeling environment. Results emphasize the 

critical role of design choices during the early stages, and thus, the necessity of a 

meticulous optimization of geometric variables. Moreover, in order to analyze the 

optimization during an advanced and highly detailed phase of the project, the case 

of a retrofit of an existing building is considered, and a methodology is proposed, 

testing an advanced algorithm, the active-archive Non-dominated Sorting Genetic 

Algorithm-II (aNSGA-II). Architecturally-compatible passive retrofit strategies on 

the building envelope are analyzed and the optimization process is carried out to 

find an energy- and cost- efficient solution. Furthermore, active strategies and 

renewable energy are also considered, reflecting on their role in the 

decarbonization of the building stock and in making inhabitants less subjected to 

energy price fluctuations.  

The thesis concludes by illustrating the answers to the research questions raised in 

the introduction, emphasizing multi-objective BPO's potential to address and 

inform design decisions from early phases, aligning with the current necessity of 

collaborative and multi-disciplinary design process. Therefore, the thesis 

demonstrates how BPO can be of support in different phases of a building design, 

showing the significant variables to be analyzed based on the level of detail of the 

design phase considered and proposing specific methodologies.  

The impact of the research here presented extends beyond academia, influencing 

professionals, software developers, and policymakers in promoting sustainable 

and low-energy buildings towards the mitigation of climate change and fuel 

poverty. 
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Sommario 
 

La crescente complessità intrinseca all’ambiente costruito, dovuta alla complessa 

interazione di vari fattori legati ad obiettivi ambientali, sociali ed economici, pone 

sfide significative nel raggiungimento delle esigenti prestazioni richieste oggi agli 

edifici ma, allo stesso tempo, fornisce opportunità per innovarne il processo 

progettuale. Questa tesi di dottorato esplora l’integrazione di metodologie di 

ottimizzazione multi-obiettivo della prestazione dell’edificio all’interno di diverse 

fasi progettuali, combinando modellazione parametrica, simulazione in regime 

dinamico e algoritmi di ottimizzazione. Lo studio approfondisce come tali 

metodologie possano affrontare la complessità del processo di progettazione di 

edifici sostenibili e a basso consumo energetico, dalla fase schematica del progetto 

di nuova costruzione fino al retrofit di un edificio esistente. A tal fine, si focalizza 

su edifici residenziali multifamiliari, in quanto rappresentano una priorità nelle 

politiche di efficientamento energetico a livello nazionale ed internazionale e 

svolgono un ruolo chiave nell’affrontare problematiche attuali, quali il 

cambiamento climatico e la povertà energetica. 

La ricerca prende le mosse dal concetto di ambiente costruito come sistema 

complesso, enfatizzando la necessità di strumenti digitali avanzati a supporto di 

tale complessità. Le fasi decisionali del progetto, infatti, sono caratterizzate da 

numerose possibili combinazioni di strategie passive, le quali permettono di 

migliorare la prestazione dell’edificio senza l’utilizzo di energia supplementare. Tali 

soluzioni progettuali influenzano gli obiettivi spesso contrastanti che un edificio 

sostenibile si propone di raggiungere, verso elevate condizioni di comfort e 

funzionalità, senza la conseguenza di eccessivi consumi energetici ed emissioni. 

In primo luogo, una revisione sistematica della letteratura scientifica, condotta 

parallelamente ad un questionario online distribuito a studi di architettura, 

evidenzia da un lato l’attualità del tema nella ricerca, dall’altro la scarsa diffusione 

di strumenti sia di simulazione che di ottimizzazione nella pratica architettonica. 

Analizzati i disallineamenti tra ricerca e pratica professionale, la tesi propone 
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quindi specifiche metodologie, consolidate sui risultati della suddetta revisione, per 

l’utilizzo dell’ottimizzazione multi-obiettivo sia per nuove costruzioni che per 

edifici esistenti, dimostrandole attraverso applicazioni su casi studio rilevanti. 

L’ottimizzazione svolta durante la fase schematica del progetto (e quindi per il caso 

di nuova costruzione), prende in considerazione le variabili geometriche 

dell’edificio per minimizzare i consumi energetici e massimizzare l’ingresso di luce 

naturale al suo interno. La metodologia proposta integra in ambiente di 

modellazione parametrico, simulazioni multidisciplinari e ottimizzazione. I risultati 

enfatizzano il ruolo critico delle scelte progettuali durante le fasi iniziali del 

progetto e quindi la necessità di una attenta ottimizzazione delle variabili 

geometriche. Inoltre, al fine di analizzare l’ottimizzazione durante una fase del 

progetto avanzata e più dettagliata, viene considerato il caso di un retrofit di un 

edificio esistente e viene proposta una metodologia, testando un avanzato 

algoritmo, l’active-archive Non-dominated Sorting Genetic Algorithm-II (aNSGA-II). Sono 

identificate strategie passive di retrofit sull’involucro edilizio, compatibili da un 

punto di vista architettonico, e viene eseguito il processo di ottimizzazione per 

trovare una soluzione efficiente sia dal punto di vista energetico che economico. 

Inoltre, sono prese in considerazione anche strategie attive e energie rinnovabili, 

riflettendo sul loro ruolo nella decarbonizzazione del patrimonio edilizio e nel 

rendere gli abitanti meno soggetti a fluttuazioni di prezzi dell’energia. 

La tesi conclude illustrando le risposte alle domande di ricerca sollevate 

nell'introduzione, sottolineando il potenziale dell’ottimizzazione multi-obiettivo 

della prestazione dell’edificio nell’indirizzare ed informare le scelte del progettista 

fin dalle prime fasi, allineandosi con la necessità di un processo di progettazione 

collaborativo e multidisciplinare. La tesi dimostra quindi come strumenti di 

simulazione connessi a algoritmi di ottimizzazione possano essere di supporto 

nelle diverse fasi della progettazione di un edificio, mostrando le variabili 

significative da analizzare in base al livello di dettaglio della fase progettuale 

considerata e proponendo metodologie specifiche. L’impatto della ricerca qui 

presentata si estende oltre il mondo accademico, influenzando professionisti, 
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sviluppatori di software e policy-makers nella promozione di edifici sostenibili e a 

basso consumo energetico verso la mitigazione del cambiamento climatico e della 

povertà energetica. 

 

Parole chiave 
 

ottimizzazione multi-obiettivo, simulazione della prestazione dell’edificio, fase schematica 

di progetto, retrofit, algoritmo genetico, strategie passive



 

 

1 
 

 

 

Introduction 
 
 

This chapter provides a general introduction to this doctoral thesis. It aims to give 
insights into the background and motivation of the research (section 1.1), 
introducing the main concepts covered in this dissertation, which will then be 
explored in depth in the following chapters. The gaps and limitations of previous 
research are illustrated, and the research aims and questions are clearly described 
in section 1.2, defining the main research question and the related sub-questions 
that aim to address the challenges previously described. Moreover, in the same 
section, the potential target audience of this study is delineated. Finally, section 1.3 
briefly presents the structure of the thesis and the main methods adopted to 
answer the questions posed above, with the aim of facilitating the reader's 
understanding and orientation within this thesis. 



 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Background and motivation of the research 
 

The built environment is everything humanly made, intended to serve human 

activities while mediating the overall environment (Bartuska, 2007). It can be 

considered as a complex system that exists in relationship with other systems, e.g., 

the closeby natural environment and the people who live in those spaces (Reith & 

Brajković, 2021). Indeed, particularly when dealing with sustainable design, 

adopting systemic thinking, i.e. thinking in terms of wholes, is crucial (Voulvoulis 

et al., 2022). All the components influencing the built environment performance 

(and being influenced by it) present intricated interrelations, resulting in emergent 

performances that can not be understood by the analysis of individual parts alone. 

Moreover, sustainability in the construction sector is no longer a goal to reach but 

a necessity (Mumovic & Santamouris, 2018). Indeed, buildings are still responsible 

for approximately 40% of energy consumption and 36% of greenhouse gas 

emissions in the European Union (EU) (European Parliament, 2018b). 

Consequently, they represent a threat to worsening environmental issues and the 

effects of climate change, but, at the same time, they have a great potential for 
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combating these current critical issues. In fact, the construction sector is one of 

the key sectors in recent European environmental policies towards climate 

neutrality in 2050, i.e. achieving net zero greenhouse gas emissions for EU 

countries (European Commission COM/2019/640 final, 2019).  

One of the main EU policies pursuing a reduction of the environmental impact of 

buildings is the Energy Performance of Buildings Directive (EPBD), which was 

first adopted in 2002 and then revised in 2010 and 2018 (European Parliament, 

2002, 2010, 2018a). The EPBD requires that all new buildings must be nearly Zero 

Energy Buildings (nZEB) and the recent recast proposal (European Parliament, 

2021) set more severe standards, the Zero Emission Building (ZEB) standard for 

all new buildings starting from 2030. Moreover, the European Renovation Wave 

aims to boost building renovations, starting from public buildings, to achieve cost-

effective transformation of existing buildings into nZEBs towards a highly 

efficient and decarbonized building stock by 2050 (European Commission, 2020). 

Therefore, the performance required for both new and existing buildings is 

increasingly stringent and challenging to achieve.  

In greater detail, in the construction sector, residential buildings play a key role 

and are a priority in energy efficiency measures at the national and international 

levels as they account for a significant part of total energy consumption, more than 

a quarter of the total (27% in 2021) (Eurostat, n.d.-b). Therefore, significant CO2 

emissions are produced by this sector, as well as high energy expenditure of 

households, particularly in the last few years where we have witnessed a sharp 

increase in fuel and energy poverty levels, especially among the most vulnerable 

population due to low incomes, high energy prices, and poor building 

performances (European Parliament, 2022). In fact, 22.3% of the European 

building stock was built before 1946 and around 44% between 1946 and 1980 

(Eurostat, n.d.-a). Thus, the majority of the existing building stock is obsolete from 

an energy performance point of view, as they are older than the first regulations 

on building energy performance (Rosso et al., 2021). For these reasons, there is a 

growing interest in energy efficiency in the residential sector, developing strategies 
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and actions both at the EU (European Parliament, 2018a, 2021) and at a national 

level (DL 34/2020, 2020) to set severe mandatory constraints both for new 

buildings and retrofit actions (Ascione et al., 2022). 

Design choices play a fundamental role in achieving these increasingly high 

performances, influencing the future behavior of the building since the earliest 

design phases (Granadeiro et al., 2012). Numerous possible passive strategies, i.e. 

solutions that do not use extra energy to improve the performance of the building, 

can be implemented towards more sustainable and low-energy buildings, starting 

from a good orientation within the construction site to the detailed thermo-

physical parameters of the materials used for the building envelope (Cabeza & 

Chàfer, 2020). All possible alternatives to consider with respect to different 

objectives and different stakeholders involved can make the design decision 

phases very difficult to address. Given the amount of effort required to develop 

and evaluate the most suitable combination of passive strategies, a limited design 

space is most often considered, compromising the quality of the resulting building 

performance and also restricting the architects’ creative potential (Turrin et al., 

2011). 

Advanced digital tools can manage this increasing complexity of the project and 

can offer us opportunities for approaching the design of buildings in new ways 

(Naboni et al., 2013). Indeed, simulation tools can provide accurate analysis of 

different aspects of building performance, increasing the awareness of the 

designer's choices and the understanding of the influence of a design solution on 

the future performance of the building (Han et al., 2018). Moreover, using 

parametric modeling, different alternatives can be easily generated and 

optimization algorithms can be used to search in the wide solution space 

effectively, instead of considering just a few combinations of passive strategies 

(Kheiri, 2018). Optimal solutions can be found in relation to different objectives, 

often conflicting with each others. For example, the achievement of high energy 

performance of a building often brings about an increase in investment costs, i.e. 

the initial cost for the implementation of the strategies. Indeed, taking into account 
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real applications, more than one objective is usually considered in the optimization 

process, and a multi-objective optimization should be carried out to account for 

all the conflicting objectives.  

Moreover, design choices made during the schematic design phases are those that 

most influence the performance of the building and furthermore, these can be 

implemented in a phase in which the project is more flexible to changes without 

significantly increasing costs (MacLeamy, 2010). Architects have a key role in those 

phases and make crucial decisions early in the design process, such as determining 

the building form, orientation, and window layout, often without much assistance 

from simulation software. However, achieving such high building performance is 

challenging, and given the increasing complexity of the built environment, it 

cannot be addressed with intuition or experience alone.  

While building energy simulations can effectively predict performance and 

compare design options, they are commonly employed too late in the traditional 

design process (Østergård et al., 2016). Indeed, performance simulations are 

primarily conducted for equipment size and code compliance after the 

architectural design has been finalized. This is also motivated by the fact that 

significant challenges lie in the required detailed data for simulations and 

interoperability issues with the design tools. Thus, particular attention should be 

paid to simulation models adapting to the different phases of the design process 

and the corresponding level of detail. Indeed, even if the distinction between 

phases in the design process has blurred in recent years due to digital 

developments, the level of detail increases as the design proceeds. For example, 

during the schematic design phase, massing, spatial relationships, and the overall 

form of the building are explored, and several design alternatives are developed 

and compared, following the requirements and constraints of the project 

(Mankins, 2013). 

When numerous variables and different conflicting objectives are involved, recent 

research has focused on multi-objective building performance optimization (BPO) 

techniques and different methodologies have been developed, both for new 
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constructions (Ascione et al., 2019; Negendahl & Nielsen, 2015) and existing 

buildings (Panagiotidou, 2020; Rosso et al., 2020). However, it seems that this kind 

of design approach is still not widespread among professionals (Attia et al., 2013; 

Wortmann et al., 2022), especially in architectural practice (Kistelegdi et al., 2022; 

Shi et al., 2016). This is an issue that should not be underestimated, as architects 

are typically responsible for making crucial decisions during the early stages of 

design. Thus, the topic still demands methodologies and tools supporting different 

aspects of BPO and its introduction into common practice, focusing on their 

applicability and their efficacy in solving real problems. Furthermore, updated 

information on the actual diffusion of building performance simulation and 

optimization in practice and needs of potential users should be collected to 

develop practice-oriented methodologies. 

The above-mentioned BPS and BPO gaps are further exacerbated in the 

residential sector, which is a crucial sector as illustrated at the beginning of this 

text. Indeed, due to COVID-19, many people are spending more time at home 

(Balest & Stawinoga, 2022) and this behavior is likely to continue as working from 

home is having diverse benefits to the workers and society as a whole (Hook et 

al., 2020). Residential buildings, as a consequence, have the dual function of houses 

and offices most often, and the trend is likely to increase (Hu, 2020). Therefore, 

addressing not only energy aspects but integrating also comfort metrics, such as 

visual comfort (Carlucci et al., 2015), is of utmost importance for building more 

energy-efficient, comfortable, and healthy spaces to live/work in, and more 

generally, to spend time in. However, while daylight performance has been 

extensively studied in BPO works related to office or educational buildings during 

schematic design phases (Fang & Cho, 2019; Noorzai et al., 2022), little research 

has been conducted in residential ones (Dogan & Park, 2017), which appears as a 

limitation due to the newly acquired office function of residential spaces. 

Additionally, the cost of energy has significantly increased, thus becoming a 

heavier burden for those who live and work at home, and to the most vulnerable 

residents, i.e., elderly people or disadvantaged residents. Thus, the focus on social 
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housing - also evidenced as a priority by the European Union - and its energy 

retrofit is even more pressing today that the prices of energy resources are 

characterized by strong uncertainty and fuel poverty is significantly increasing.  

 

1.2 Research aims and questions 
 

Given the above panorama, the research aims to address the challenges and gaps 

described in the previous section, through an in-depth analysis of multi-objective 

BPO of passive design strategies for sustainable and low-energy residential 

buildings for the optimization of geometric variables and envelope characteristics 

using genetic algorithms. 

In greater detail, the research aim is to propose effective multi-objective 

methodologies for achieving sustainable residential buildings at the different 

design stages, while dealing with the decisions on geometric variables from the 

schematic design phase, considering energy and daylight objectives (new 

construction) to the detailed development phase, considering the envelope 

proprieties with respect to energy, emissions, and costs (retrofit of existing 

buildings).  

Thus, the main Research Question of this thesis is the following: 

 

RQ1. How can multi-objective BPO address complexity in the design process of 

sustainable and low-energy buildings from the schematic design phases up to 

retrofit strategies, and how to increase its applicability? 

To answer the main research question, this dissertation aims to address in the 

different chapters five sub-questions, as follows: 

RQ2. How does sustainability increase complexity in building design and which 

advanced digital tools can deal with such complexity? (Chapter 2) 

RQ3. What is the state of the art of multi-objective BPO in schematic design 

phases both in scientific literature and in practice, and what are the challenges to 

integrating BPO into the design process? (Chapter 3)  
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RQ4. How can multi-objective BPO be applied to the schematic design phase of 

a new building while dealing with the decisions on geometric variables? (Chapter 

4) 

RQ5. How can multi-objective BPO be applied to retrofit strategies on existing 

buildings while dealing with a large number of building envelope variables? 

(Chapter 5) 

 

RQ2 and RQ3 question the theory behind the topics covered in the thesis and 

want to analyze the state of the art. Instead, the last two questions (RQ4 and RQ5) 

aim to guide the investigation through practical applications, not only helping in 

the identification of challenges associated with the utilization of BPO in different 

design stages but also facilitating an understanding of its implications in the 

architects’ design practice. Thus, the goal is to empower architects and engineers 

to make well-informed design decisions with a high awareness of the multiple 

facets of building performance, especially when dealing with a complex design 

problem with a large number of design parameters. For this reason, common 

problems in the applicability of computational workflows into the practice, e.g. 

required detailed data for simulations and interoperability issues with the design 

tools, are addressed while proposing the multi-objective methodologies applied in 

Chapters 4 and 5.  

Therefore, this thesis targets both researchers and practitioners interested in 

sustainable building design, performance simulation, and optimization techniques 

to enhance their ability to address decision-making phases. Indeed, the thesis can 

stimulate researchers’ interests because it focuses on a field of research that has 

been particularly active in recent years and applies it to current problems, such as 

the trade-off between energy and daylight in residential buildings, an issue even 

more important today that our habits have changed spending more time in our 

homes, or the optimization of the retrofit strategies of a social housing building to 

respond to the recent growth in fuel poverty. Moreover, the thesis targets 

practitioners too, involved in both new and existing buildings. Indeed, some 
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barriers to the application of BPO in practice are addressed here, and a more 

collaborative and multi-disciplinary design process could be carried out using the 

proposed methodologies. Furthermore, the research may also be of interest to 

AEC software developers, collecting useful information from the survey to 

enhance usability and select appropriate functions for new software. Additionally, 

this research can benefit policymakers by informing strategies for the green and 

digital transition of the construction sector. 

To facilitate the reading of this dissertation, the following section presents the 

structure of the thesis and the methods adopted. 

 

1.3 Thesis structure and methods 
 

This section provides an overview of the structure of the thesis and the methods 

used to answer the research questions previously described. Figure 1 represents a 

summary diagram of the structure of this dissertation which is explained in more 

detail in the following paragraphs. 

 

 
Figure 1. Structure of the thesis. 
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The first part of the research is a review of the state of the art on sustainability and 

complexity within the built environment, regulations and strategies. Then, 

parametric modeling, energy and daylight simulations and optimization techniques 

are analyzed, introducing the theoretical principles behind them and the main tools 

whose integration leads to BPO methods (Chapter 2). Indeed, in Chapter 3, the 

research aims to gather specific information on BPO during schematic design 

phases in both literature and practice. Towards this aim, a systematic literature 

review is carried out, and an online survey is distributed to architectural firms, as 

they have a fundamental role in early design phases. Thus, the online and 

anonymous survey has the goal to understand knowledge and diffusion of BPO in 

the practice and opportunities and barriers concerning the potential adoption in 

the professional world. Indeed, this review in research and practice looks at 

academic articles to extract what resonates and does not resonate in research but 

also what matches and does not match with needs in practice and vice versa. The 

work described in Chapter 3 was carried out during the visiting research period 

abroad at TU Delft, with the help and supervision of prof. Sevil Sariyildiz and 

prof. Michela Turrin. 

Based on the results of the review, Chapter 4 focuses on the methodological 

framework for the geometric variables optimization during the schematic design 

phase with respect to the energy performance and the accessibility of daylight in a 

new residential building. Indeed, energy and daylight are two fundamental 

components in sustainable residential building design and, particularly in 

Mediterranean climates, they are two conflicting objectives. To verify the 

proposed methodology, an application on a new construction apartment block 

located in Rome is carried out, focusing on the integration of modeling, 

multidisciplinary simulation and optimization in the same parametric 

environment. 

Instead, Chapter 5 deals with the methodological framework related to envelope 

optimization, considering energy and economic aspects. For this reason, a retrofit 

of a significant case study pertaining to the social housing buildings in Rome is 
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chosen, addressing energy efficiency measures feasible from an architectural and 

economic perspective. Given the complexity of the project, an in-house aNSGA-

II, which is a recent optimization algorithm still not widely diffused, is developed 

and tested, thanks to the collaboration with the Department of Astronautical, 

Electrical and Energy Engineering in Sapienza University of Roma. Moreover, 

since the case study is a social housing building, an analysis of the energy price 

increase between 2019 and 2022 due to geopolitical instabilities is carried out, 

evaluating the benefits of the modification of the HVAC system and 

implementation of renewable energy on the fuel poverty issue. 

Finally, Chapter 6 draws conclusions, highlighting the contribution of the research 

and introducing the limitations and future developments.  
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